Skip to main content
Log in

Nickel/TiO2-catalyzed Suzuki–Miyaura cross-coupling of arylboronic acids with aryl halides in MeOH/H2O

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Ni/TiO2 nanoparticles were synthesized as a separable and reusable nanocatalyst. The catalyst structure was investigated by XRD, SEM, FT–IR, and N2 adsorption–desorption isotherm analysis and then successfully applied for the synthesis of biaryl compounds through a Suzuki–Miyaura cross-coupling reaction. A wide variety of biaryl compounds were successfully synthesized through the developed catalytic process in MeOH/H2O, and all desired biaryl compounds were obtained in good to excellent yields (60–100%) after a relatively short reaction time. Fortunately, the catalyst can be readily recovered and reused for at least five runs without any significant impact on the yield of the products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the finding of this study are included within the text.

References

  1. Andrade MA, Martins LM (2020) Molecules 25:5506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fantoni T, Tolomelli A, Cabri W (2022) Catal Today 397:265

    Article  Google Scholar 

  3. Kaneda K, Mizugaki T (2009) Energy Environ Sci 2:655

    Article  CAS  Google Scholar 

  4. Gujral SS, Khatri S, Riyal P, Gahlot V (2012) Indo Global J Pharm Sci 2:351

    Article  Google Scholar 

  5. Maluenda I, Navarro O (2015) Molecules 20:7528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miyaura N, Suzuki A (1995) Chem Rev 95:2457

    Article  CAS  Google Scholar 

  7. Fihri A, Bouhrara M, Nekoueishahraki B, Basset JM, Polshettiwar V (2011) Chem Soc Rev 40:5181

    Article  CAS  PubMed  Google Scholar 

  8. Lennox AJ, Lloyd-Jones GC (2014) Chem Soc Rev 43:412

    Article  CAS  PubMed  Google Scholar 

  9. Koohgard M, Hosseini-Sarvari M (2018) Catal Commun 111:10

    Article  CAS  Google Scholar 

  10. Amatore C, Jutand A (2000) Acc Chem Res 33:314

    Article  CAS  PubMed  Google Scholar 

  11. Hu J, Liu Y (2005) Langmuir 21:2121

    Article  CAS  PubMed  Google Scholar 

  12. Martin R, Buchwald SL (2008) Acc Chem Res 41:1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chatterjee A, Ward TR (2016) Catal Lett 146:820

    Article  CAS  Google Scholar 

  14. Polshettiwar V, Decottignies A, Len C, Fihri A (2010) Chemsuschem 3:502

    Article  CAS  PubMed  Google Scholar 

  15. Paul S, Islam MM, Islam SM (2015) RSC Adv 5:42193

    Article  CAS  Google Scholar 

  16. Molnar A (2011) Chem Rev 111:2251

    Article  CAS  PubMed  Google Scholar 

  17. Bayan R, Karak N (2017) ACS Omega 2:8868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ohsumi M, Nishiwaki N (2017) ACS Omega 2:7767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wittstock A, Zielasek V, Biener J, Friend CM, Bäumer M (2010) Science 327:319

    Article  CAS  PubMed  Google Scholar 

  20. Climent MJ, Corma A, Iborra S, Mifsud M (2007) Adv Synth Catal 349:1949

    Article  CAS  Google Scholar 

  21. Chinchilla R, Nájera C (2007) Chem Rev 107:874

    Article  CAS  PubMed  Google Scholar 

  22. Firouzabadi H, Iranpoor N, Kazemi F, Gholinejad M (2012) J Mol Catal A Chem 357:154

    Article  CAS  Google Scholar 

  23. Zhou X, Guo X, Jian F, Wei G (2018) ACS Omega 3:4418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saptal VB, Saptal MV, Mane RS, Sasaki T, Bhanage BM (2019) ACS Omega 4:643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saito S, Oh-Tani S, Miyaura N (1997) J Org Chem 62:8024

    Article  CAS  PubMed  Google Scholar 

  26. Lipshutz BH, Sclafani JA, Blomgren PA (2000) Tetrahedron 56:2139

    Article  CAS  Google Scholar 

  27. Guo L, Srimontree W, Zhu C, Maity B, Liu X, Cavallo L, Rueping M (2019) Nat Commun 10:1

    Article  Google Scholar 

  28. Ehle AR, Zhou Q, Watson MP (2012) Org Lett 14:1202

    Article  CAS  PubMed  Google Scholar 

  29. Wang M, Yuan X, Li H, Ren L, Sun Z, Hou Y, Chu W (2015) Catal Commun 58:154

    Article  CAS  Google Scholar 

  30. Sardzinski LW, Wertjes WC, Schnaith AM, Kalyani D (2015) Org Lett 17:1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zaleska A (2008) Recent Pat Eng 2:157

    Article  CAS  Google Scholar 

  32. Hosseini-Sarvari M, Jafari F, Mohajeri A, Hassani N (2018) Catal Sci Technol 8:4044

    Article  CAS  Google Scholar 

  33. Hosseini-Sarvari M, Dehghani A (2020) New J Chem 44:16776

    Article  CAS  Google Scholar 

  34. Paz Y (2010) Appl Catal B 99:448

    Article  CAS  Google Scholar 

  35. Hosseini-Sarvari M, Jafari F, Dehghani A (2022) Appl Nanosci 12:2195

    Article  CAS  Google Scholar 

  36. Han D, Zhang Z, Bao Z, Xing H, Ren Q (2018) Front Chem Sci Eng 12:24

    Article  CAS  Google Scholar 

  37. Chen WT, Chan A, Sun-Waterhouse D, Moriga T, Idriss H, Waterhouse GI (2015) J Catal 326:43

    Article  CAS  Google Scholar 

  38. Guan B, Yu J, Guo S, Yu S, Han S (2020) Nanoscale Adv 2:1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Manzoor M, Rafiq A, Ikram M, Nafees M, Ali S (2018) Int Nano Lett 8:1

    Article  Google Scholar 

  40. Li X, Wu Y, Shen Y, Sun Y, Yang Y, Xie A (2018) Appl Surf Sci 427:739

    Article  CAS  Google Scholar 

  41. Khojasteh H, Salavati-Niasari M, Mortazavi-Derazkola S (2016) J Mater Sci Mater 27:3599

    Article  CAS  Google Scholar 

  42. Rosen BM, Huang C, Percec V (2008) Org Lett 10:2597

    Article  CAS  PubMed  Google Scholar 

  43. Zhao YL, Li Y, Li SM, Zhou YG, Sun FY, Gao LX, Han FS (2011) Adv Synth Catal 353:1543

    Article  CAS  Google Scholar 

  44. Tobisu M, Xu T, Shimasaki T, Chatani N (2011) J Am Chem Soc 133:19505

    Article  CAS  PubMed  Google Scholar 

  45. Tang ZY, Hu QS (2004) J Am Chem Soc 126:3058

    Article  CAS  PubMed  Google Scholar 

  46. Molander GA, Beaumard F (2010) Org Lett 12:4022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Quasdorf KW, Riener M, Petrova KV, Garg NK (2009) J Am Chem Soc 131:17748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen GJ, Han FS (2012) J Org Chem 2012:3575

    CAS  Google Scholar 

  49. Baghbanzadeh M, Pilger C, Kappe CO (2011) J Org Chem 76:1507

    Article  CAS  PubMed  Google Scholar 

  50. Zhao YL, Li Y, Li Y, Gao LX, Han FS (2010) Chem Eur J 16:4991

    Article  CAS  PubMed  Google Scholar 

  51. Chen GJ, Huang J, Gao LX, Han FS (2011) Chem Eur J 17:4038

    Article  CAS  PubMed  Google Scholar 

  52. Chen H, Huang Z, Hu X, Tang G, Xu P, Zhao Y, Cheng CH (2011) J Org Chem 76:2338

    Article  CAS  PubMed  Google Scholar 

  53. Tobisu M, Shimasaki T, Chatani N (2008) Angew Chem Int Ed 120:4944

    Article  Google Scholar 

  54. Kuwano R, Shimizu R (2011) Chem Lett 40:913

    Article  CAS  Google Scholar 

  55. Yu DG, Yu M, Guan BT, Li BJ, Zheng Y, Wu ZH, Shi ZJ (2009) Org Lett 11:3374

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Chemistry, Shiraz University for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Hosseini-Sarvari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini-Sarvari, M., Dehghani, A. Nickel/TiO2-catalyzed Suzuki–Miyaura cross-coupling of arylboronic acids with aryl halides in MeOH/H2O. Monatsh Chem 154, 397–405 (2023). https://doi.org/10.1007/s00706-023-03052-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03052-9

Keywords

Navigation