Skip to main content
Log in

The use of nanocomposite approach in the construction of carbon paste electrode and its application for the potentiometric determination of iodide

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

New modified iodide-selective carbon paste electrodes based on a palladium(II) complex were prepared using multi-walled carbon nanotubes and/or metal oxide nanoparticles to demonstrate the feasibility of the nanocomposite approach to enhance the selectivity of their sensing layer. The question of whether or not the performance characteristics of the electrodes were affected by the incorporation of these materials was investigated. The linear working ranges and slopes of these electrodes were determined for comparison to specify the optimum nanosensing layer of the carbon paste electrode for better iodide sensitivity. The results showed that the introduction of multi-walled carbon nanotubes improved the Nernstian slope of the electrode from a value of 43.8 ± 0.6 to 57.7 ± 1.8 mV/pI at pH = 4.0. The response time, the detection limit, and a lifetime of the electrode were found as < 5 s, 2.9 × 10−8 mol dm−3, and ≥ 4 months, respectively. Furthermore, the proposed electrode with improved selectivity was successfully employed for the determination of iodide in a pharmaceutical sample by potentiometric titration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dalkıran B, Özel AD, Parlayan S, Canel E, Ocak Ü, Kılıç E (2010) Monatsh Chem 141:829

    Article  CAS  Google Scholar 

  2. Foroumadi A, Shafiee A, Norouzi P (2011) Int J Electrochem Sci 6:52

    Google Scholar 

  3. Bühlmann P, Chen LD (2012) Supramol Chem: Mol Nanomater 5:2539

    Google Scholar 

  4. Özel AD, Dikici E, Bachas LG (2013) Monatsh Chem 144:781

    Article  CAS  Google Scholar 

  5. Cuartero M, Pérez S, García M, Ortuño JA (2014) Monatsh Chem 145:1879

    Article  CAS  Google Scholar 

  6. Bagheri H, Afkhami A, Shirzadmehr A, Khoshsafar H (2014) J Mol Liq 197:52

    Article  CAS  Google Scholar 

  7. Dehnavi A, Soleymanpour A (2019) Mater Sci Eng C 94:403

    Article  CAS  Google Scholar 

  8. Shirdel A, Zamani HA, Joz-Yarmohammadi F, Beyramabadi SA, Abedi MR (2016) J Incl Phenom Macrocycl Chem 86:351

    Article  CAS  Google Scholar 

  9. Abdel-Haleem FM, Shehab OR (2016) Electroanalysis 28:800

    Article  CAS  Google Scholar 

  10. Alizadeh T, Atayi K (2018) Mater Chem Phys 209:180

    Article  CAS  Google Scholar 

  11. Alizadeh T, Rafiei F (2019) Mater Chem Phys 227:176

    Article  CAS  Google Scholar 

  12. Elbalkiny HT, Yehia AM, Safa’a MR, Elsaharty YS (2019) Microchem J 145:90

    Article  CAS  Google Scholar 

  13. Yang B, Xu J, Wang C, Xiao J (2020) Mater Chem Phys 245:122679

    Article  CAS  Google Scholar 

  14. Canel E, Erden S, Özel AD, Memon S, Yılmaz M, Kılıç E (2008) Turk J Chem 32:323

    CAS  Google Scholar 

  15. Oiye ÉN, Ribeiro MFM, Katayama JMT, Tadini MC, Balbino MA, Eleotério IC, Oliveira MF (2019) Crit Rev Anal Chem 49:488

    Article  CAS  PubMed  Google Scholar 

  16. Karimipour G, Gharaghani S, Ahmadpour R (2012) E-J Chem 9:2565

    Article  CAS  Google Scholar 

  17. El-Kosasy AM, Rahman MHA, Abdelaal SH (2019) Talanta 193:9

    Article  CAS  PubMed  Google Scholar 

  18. EL-Sanafery SS, Abbas AA, Mohamed GG (2022) Electroanalysis 34:872

    Article  CAS  Google Scholar 

  19. Adeli A, Khoshnood RS, Beyramabadi SA, Pordel M, Morsali A (2022) Monatsh Chem 153:227

    Article  CAS  Google Scholar 

  20. Shawish HMA, Elhabiby M, Aziz HSA, Saadeh SM, Tbaza A (2016) Sens Actuators B Chem 235:18

    Article  CAS  Google Scholar 

  21. Dou R, Du Z, Bao T, Dong X, Zheng X, Yu M (2016) Nanoscale 8:11531

    Article  CAS  PubMed  Google Scholar 

  22. Miao P, Tang Y, Wang L (2017) ACS Appl Mater Interfaces 9:3940

    Article  CAS  PubMed  Google Scholar 

  23. Gautam V, Singh KP, Yadav VL (2018) Anal Bioanal Chem 410:2173

    Article  CAS  PubMed  Google Scholar 

  24. Gautam V, Srivastava A, Singh KP, Yadav VL (2017) Polym Compos 38:496

    Article  CAS  Google Scholar 

  25. Abdallah NA (2021) Electroanalysis 33:1283

    Article  CAS  Google Scholar 

  26. Alizadeh T, Zargr F (2020) Mater Chem Phys 240:122118

    Article  CAS  Google Scholar 

  27. Savari Z, Soltanian S, Noorbakhsh A, Salimi A, Najafi M, Servati P (2013) Sens Actuators B Chem 176:335

    Article  CAS  Google Scholar 

  28. Zhou Y, Yang L, Li S, Dang Y (2017) Sens Actuators B Chem 245:238

    Article  CAS  Google Scholar 

  29. Ghaedi M, Montazerozohori M, Mortazavi K, Behfar M, Marahel F (2011) Int J Electrochem Sci 6:6682

    CAS  Google Scholar 

  30. Ghaedi M, Montazerozohori M, Behfar M, Marahel F (2011) Int J Electrochem Sci 6:6074

    CAS  Google Scholar 

  31. Soleimani M, Afshar MG (2013) Int J Electrochem Sci 8:8718

    Google Scholar 

  32. Shariyati M, Zamani HA, Dehnavi A, Abedi MR (2014) Int J Electrochem Sci 9:8320

    Google Scholar 

  33. Mortazavi K, Ghaedi M, Tehrani MS, Montazerozohori M (2015) IEEE Sens J 15:322

    Article  CAS  Google Scholar 

  34. Shirzadmehr A, Rezaei M, Bagheri H, Khoshsafar H (2016) Int J Environ Anal Chem 96:929

    Article  CAS  Google Scholar 

  35. Ramezani S, Mashhadizadeh MH, Ghobadi M, Jalilian S (2016) Int J Environ Sci Technol 13:2175

    Article  CAS  Google Scholar 

  36. Zaheiritousi N, Zamani HA, Abedi MR, Meghdadi S (2017) Int J Electrochem Sci 12:2647

    Article  CAS  Google Scholar 

  37. Pandey H, Khare P, Singh S, Singh SP (2020) Mater Chem Phys 239:121966

    Article  CAS  Google Scholar 

  38. Ibupoto ZH, Khun K, Willander M (2013) Sensors 13:1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ghaedi M, Jaberi SYS, Hajati S, Montazerozohori M, Zarr M, Asfaram A, Kumawat LK, Gupta VK (2015) Electroanalysis 27:1516

    Article  CAS  Google Scholar 

  40. Wang N, Wang F, Liao Y, Liu H, Li Y, He X (2017) Anal Methods 9:3159

    Article  CAS  Google Scholar 

  41. Amini MK, Ghaedi M, Rafi A, Habibi M, Zohory MM (2003) Sensors 3:509

    Article  CAS  Google Scholar 

  42. Perrine CG, Herrick K, Serdula MK, Sullivan KM (2010) J Nutr 140:1489

    Article  CAS  PubMed  Google Scholar 

  43. Andersson M, Karumbunathan V, Zimmermann MB (2012) J Nutr 142:744

    Article  CAS  PubMed  Google Scholar 

  44. Shamsipur M, Soleymanpour A, Akhond M, Sharghi H, Naseri MA (2001) Anal Chim Acta 450:37

    Article  CAS  Google Scholar 

  45. Abbas MNED (2003) Anal Sci 19:229

    Article  CAS  PubMed  Google Scholar 

  46. Mortazavi K, Ghaedi M, Montazerozohori M, Andikaey Z (2011) Int J Electrochem Sci 6:4250

    CAS  Google Scholar 

  47. Muratoğlu S, Özel AD, Ertürün HEK (2018) Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22:237

    Article  Google Scholar 

  48. Parra EJ, Rius FX, Blondeau P (2013) Analyst 138:2698

    Article  CAS  PubMed  Google Scholar 

  49. Yin T, Qin W (2013) TrAC Trends Anal Chem 51:79

    Article  CAS  Google Scholar 

  50. Kakhki RM (2013) Russ J Electrochem 49:458

    Article  CAS  Google Scholar 

  51. Khalil MM, El-aziz GA (2017) Electroanalysis 29:566

    Article  CAS  Google Scholar 

  52. Liu Y, Liu Y, Yan R, Gao Y, Wang P (2020) Electrochim Acta 331:135370

    Article  CAS  Google Scholar 

  53. Tamaddon A, Asghari A (2018) Anal Bioanal Electrochem 10:230

    CAS  Google Scholar 

  54. Sohrabi-Gilani N, Nasirtabrizi MH, Jadid AP (2018) Measurement 125:84

    Article  Google Scholar 

  55. Švancara I, Vytřas K, Kalcher K, Walcarius A, Wang J (2008) Electroanalysis 21:7

    Article  CAS  Google Scholar 

  56. Vytřas K, Švancara I, Metelka R (2009) J Serb Chem Soc 74:1021

    Article  CAS  Google Scholar 

  57. Ertürün HEK (2017) Int J Electrochem Sci 12:10737

    Article  CAS  Google Scholar 

  58. Abdel-Haleem FM, Saad M, Barhoum A, Bechelany M, Rizk MS (2018) Mater Sci Eng C 89:140

    Article  CAS  Google Scholar 

  59. Sharma S, Sharma KK (2014) J Appl Chem 7:50

    Google Scholar 

  60. Eugster R, Gehrig PM, Morf WE, Spichiger UE, Simon W (1991) Anal Chem 63:2285

    Article  CAS  Google Scholar 

  61. Schaller U, Bakker E, Spichiger UE, Pretsch E (1994) Anal Chem 66:391

    Article  CAS  Google Scholar 

  62. Afkhami A, Soltani-Felehgari F, Madrakian T (2014) Sens Actuators B Chem 196:467

    Article  CAS  Google Scholar 

  63. Sokalski T, Zwickl T, Bakker E, Pretsch E (1999) Anal Chem 71:1204

    Article  CAS  Google Scholar 

  64. Sokalski T, Ceresa A, Fibbioli M, Zwickl T, Bakker E, Pretsch E (1999) Anal Chem 71:1210

    Article  CAS  Google Scholar 

  65. Guo J, Chai Y, Yuan R, Song Z, Zou Z (2011) Sens Actuators B Chem 155:639

    Article  CAS  Google Scholar 

  66. Anderson EL, Bühlmann P (2016) Anal Chem 88:9738

    Article  CAS  PubMed  Google Scholar 

  67. Khalil MM, El Rouby WM, Abd-Elgawad IH (2018) IEEE Sens J 18:3509

    Article  CAS  Google Scholar 

  68. Crespo GA, Gugsa D, Macho S, Rius FX (2009) Anal Bioanal Chem 395:2371

    Article  CAS  PubMed  Google Scholar 

  69. Magnusson B, Örnemark U (2014) Eurachem guide: the fitness for purpose of analytical methods–a laboratory guide to method validation and related topics, 2nd edn. Eurachem, Belgium

    Google Scholar 

  70. Elgamouz A, Shehadi I, Assal A, Bihi A, Kawde AN (2021) J Electroanal Chem 895:115443

    Article  CAS  Google Scholar 

  71. Shrivastava A, Gupta VB (2011) Chron Young Sci 2:21

    Article  Google Scholar 

  72. Khani H, Rofouei MK, Arab P, Gupta VK, Vafaei Z (2010) J Hazard Mater 183:402

    Article  CAS  PubMed  Google Scholar 

  73. Afkhami A, Madrakian T, Shirzadmehr A, Tabatabaee M, Bagheri H (2012) Sens Actuators B Chem 174:237

    Article  CAS  Google Scholar 

  74. Hernández R, Riu J, Rius FX (2010) Analyst 135:1979

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Ankara University Scientific Research Projects Coordination Unit in providing financial support from projects numbered 10B4240003 and 16H0430021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayça Demirel Özel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslaner, S.İ., Demirel Özel, A. The use of nanocomposite approach in the construction of carbon paste electrode and its application for the potentiometric determination of iodide. Monatsh Chem 153, 881–893 (2022). https://doi.org/10.1007/s00706-022-02973-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02973-1

Keywords

Navigation