Skip to main content
Log in

Fluorescence dynamics of thiophene-based copolymer/fullerene-derivative system as solution and blend film

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A system of dimethyl ester of 3,3′′′′-bisdecyl[2,2′:5′,2″:5″,2′′′:5′′′,2′′′′:5′′′′,2′′′′′]sexithiophene-5,5′′′′′-dicarboxylic acid, with polyethylene oxide, copolymer (ST) and [6,6]phenyl-C61-butyric acid methyl ester (PCBM) is of photochemical interest. A focus is on dynamics within the ST/PCBM donor/acceptor system as a solution and as a film by means of fluorescence spectroscopy, cyclic voltammetry, and atomic force microscopy. ST forms intra-molecular rod–coil aggregates in the solution and terraces of aggregates in the film. ST/PCBM fluorescence spectra from the solution:film result in a spectral red shift of 60 nm and intensity decrease with a ratio of 17:8, respectively. The fluorescence decay times τ1 increase with increasing PCBM concentration from 17.0 to 25.5 ps and from 5.8 to 19 ps in the solutions and the films, respectively. Interestingly, the decay time τ2 result for the solutions and for the films to be on average 491 ps and 78 ps, describing the slower and the faster overall process, respectively. HOMO/LUMO levels for ST and PCBM are − 7.27 eV/− 4.42 eV and − 6.68 eV/− 4.43 eV, respectively. Excitation energy transfer between ST and PCBM is observed as radiative quenching and static quenching through the disaggregation of the ST aggregates by PCBM molecules.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yu G, Heeger AJ (1995) J Appl Phys 78:4510

    Article  CAS  Google Scholar 

  2. Krebs FC (2009) Sol Energy Mater Sol Cells 93:394

    Article  CAS  Google Scholar 

  3. Mondal R, Miyaki N, Becerril HA, Norton JE, Parmer J, Mayer AC, Tang ML, Bredas JL, McGehee MD, Bao Z (2009) Chem Mater 21:3618

    Article  CAS  Google Scholar 

  4. Youn H, Park HJ, Guo LJ (2015) Small 11:2228

    Article  CAS  PubMed  Google Scholar 

  5. Pina J, Burrows HD, de Melo JSS (2011) Photochemistry 39:30

    Article  CAS  Google Scholar 

  6. Čík G, Végh Z, Šeršeň F, Krištín J, Lakatoš B, Fejdi P (2005) Synth Met 149:31

    Article  Google Scholar 

  7. Camurlu P, Giovanella U, Bolognesi A, Botta C, Cik G, Végh Z (2009) Synth Met 159:41

    Article  CAS  Google Scholar 

  8. Dang MT, Hirsch L, Wantz G (2011) Adv Mater 23:3597

    Article  CAS  PubMed  Google Scholar 

  9. González DM, Körstgens V, Yao Y, Song L, Santoro G, Roth SV, Buschbaum MP (2015) Adv Energy Mater 8:1401770

    Article  Google Scholar 

  10. Clarke TM, Ballantyne AM, Nelson J, Bradley DDC, Durrant JR (2008) Adv Funct Mater 18:4029

    Article  CAS  Google Scholar 

  11. Ye F, Wu C, Jin Y, Chan Y-H, Zhang X, Chiu DT (2011) J Am Chem Soc 133:8146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Honda S, Yokoya S, Ohkita H, Benten H, Ito S (2011) J Phys Chem C115:11306

    Google Scholar 

  13. Kirkpatrick J, Keivanidis PE, Bruno A, Ma F, Haque SA, Yarstev A, Sundstrӧm V, Nelson J (2011) J Phys Chem B 115:15174

    Article  CAS  PubMed  Google Scholar 

  14. Singh S, Pandit B, Basel TP, Li S, Laird D, Vardeny ZV (2012) Phys Rev B 85:205206

    Article  Google Scholar 

  15. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Science 258:1474

    Article  CAS  PubMed  Google Scholar 

  16. Nguyen T, Martini IB, Liu J, Schwartz BJ (2000) J Phys Chem B 104:237

    Article  CAS  Google Scholar 

  17. Nelson J, Choulis SA, Durrant JR (2004) Thin Solid Films 508:451

    Google Scholar 

  18. Liu YX, Summers MA, Scully SR, Mc Gehee MD (2006) J Appl Phys 99:093521

    Article  Google Scholar 

  19. Cook S, Furube A, Katoh R (2008) Energy Environ Sci 1:294

    Article  CAS  Google Scholar 

  20. Xie Y, Li L, Xiao L, Qiao Q, Dhakal R, Zhang Z, Gong Q, Galipeau D, Yan X (2010) J Phys Chem C 114:14590

    Article  CAS  Google Scholar 

  21. Banerji N, Cowan S, Vauthey E, Heeger AJ (2011) J Phys Chem C 115:9726

    Article  CAS  Google Scholar 

  22. Westenhoff S, Beenken WJD, Friend RH, Greenham NC, Yartsev A, Sundstrӧm V (2006) Phys Rev Lett 97:166808

    Article  Google Scholar 

  23. Ferreira B, da Silva PF, de Melo JSS, Pina J, Maçanita A (2012) J Phys Chem B 116:2347

    Article  CAS  PubMed  Google Scholar 

  24. Lobez JM, Andrew TL, Bulovic V, Swager TM (2012) ACS Nano 6:3044

    Article  CAS  PubMed  Google Scholar 

  25. Hu Z, Gesquiere A (2009) J Chem Phys Lett 476:51

    Article  CAS  Google Scholar 

  26. Tenery D, Worden JG, Hu Z, Gesquiere AJ (2009) J Lumin 129:423

    Article  CAS  Google Scholar 

  27. Tenery D, Gesquiere A (2009) J Chem Phys 365:138

    CAS  Google Scholar 

  28. Palszegi T, Sepelak J, Jane E, Repovsky D, Szöcs V, Bugar I, Cik G, Velic D (2017) J Photochem Photobiol A Chem 343:103

    Article  CAS  Google Scholar 

  29. Wang J, Wang D, Moses D, Heeger AJ (2001) J Appl Polym Sci 82:2553

    Article  CAS  Google Scholar 

  30. Li F, Yang J, Qin Y (2013) J Polym Sci Part A Polym Chem 51:3339

    Article  CAS  Google Scholar 

  31. De S, Pascher T, Maiti M, Jespersen KG, Kesti T, Zhang F, Inganäs O, Yartsev A, Sundstrӧm V (2007) J Am ChemSoc 129:8466

    Article  CAS  Google Scholar 

  32. Trotzky S, Hoyer T, Tuszynski W, Lienau C, Parisi J (2009) J Phys D App Phys 42:055105

    Article  Google Scholar 

  33. Clafton SN, Huang DM, Massey WR, Kee TW (2013) J Phys Chem B 117:4626

    Article  CAS  PubMed  Google Scholar 

  34. Cook S, Katoh R, Furube A (2009) J Phys Chem C 113:2547

    Article  CAS  Google Scholar 

  35. Xu W-L (2015) J Phys D Appl Phys 48:485501

    Article  Google Scholar 

  36. Chen M, Li M, Wang H, Qu S, Zhao X, Xie L, Yang S (2013) Polym Chem 4:550

    Article  CAS  Google Scholar 

  37. Clark J, Silva C, Friend RH, Spano FC (2007) Phys Rev Lett 98:206406

    Article  PubMed  Google Scholar 

  38. Tretiak S, Saxena A, Martin RL, Bishop AR (2002) Phys Rev Lett 89:890974021

    Article  Google Scholar 

  39. Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  40. Gritzner G, Kuta J (1984) Pure Appl Chem 56:461

    Article  Google Scholar 

  41. Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC (2011) Adv Mater 23:2367

    Article  CAS  PubMed  Google Scholar 

  42. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  43. Pavelyev VG, Parashchuk OD, Krompiec M, Orekhova TV, Perepichka IF, van Loosdrecht PHM, Paraschuk DY, Pshenichnikov MS (2014) J Phys Chem C 118:30291

    Article  CAS  Google Scholar 

  44. Muller CH, Stingelin N, Johnston BM, Herz LM (2010) J Phys Chem Lett 1:2788

    Article  Google Scholar 

  45. van Stokkum IHM, Larsen DS, van Grondelle R (2004) BBA Bioenergetics 1657:82

    Article  PubMed  Google Scholar 

  46. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) J Cheminform 4:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pal SK, Peon J, Zewail AH (2002) Proc Nat Acad Sci USA 99:1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the APVV-15-0201, VEGA 1-0400-16, VEGA 1-0501-15, SK-PT-0015-12, Fundação para a Ciência e Technologia (FCT) (SK-PT-0015-12), (SFRH/BD/75026/2010), CMP, FCT and CIQUP (Pest-C/QUI/U10081/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Noskovičová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trenčanová, M.G., Repovský, D., Marčáková, M.L. et al. Fluorescence dynamics of thiophene-based copolymer/fullerene-derivative system as solution and blend film. Monatsh Chem 153, 1087–1098 (2022). https://doi.org/10.1007/s00706-022-02941-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02941-9

Keywords

Navigation