Skip to main content
Log in

The role of dye’s structure on the degradation rate during indirect anodic oxidation

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The aim of this work was to evaluate the possibility of decolorization of effluents that contain structurally different azo and aminoantrachinone dyes. The decolorization was performed by an indirect electrochemical oxidation in a single-chamber laboratory electrolyzer under galvanostatic mode. Anodes used for the treatment were a planar boron-doped diamond and a platinum electrode. The changes in decolorization rate of model solutions were measured during indirect electrochemical oxidation in dependence on different initial pH in the presence of sodium sulfate, which is frequently used during the dyeing process. The decolorization process was compared with another abundant salt, specifically sodium chloride. The time intervals corresponding to chromaticity change of electrolyzed solution were measured and kinetic constants were assessed. Results showed that the decolorization rate is higher in the presence of NaCl than Na2SO4 and the structure of the dye has a direct impact on the velocity of the decolorization process. However, the degradation evaluated by the determination of total organic carbon parameter showed promising results also in the presence of sulfates on the boron-doped diamond anode dropping from 104 to 21 mg dm−3. Since this parameter decreased on Pt anode only to 98 mg dm−3, boron-doped diamond anode showed better performance in the presence of sulfates.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nidheesh PV, Zhou M, Oturan MA (2018) Chemosphere 197:210

    Article  CAS  PubMed  Google Scholar 

  2. Comninellis CH, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) J Chem Technol Biotechnol 83:769

    Article  CAS  Google Scholar 

  3. Souza FL, Lanza MRV, Llanos J, Sáez C, Rodrigo MA, Cañizares P (2015) J Environ Manage 158:36

    Article  CAS  PubMed  Google Scholar 

  4. Chaplin BP (2014) Environ Sci Processes Impacts 16:1182

    Article  CAS  Google Scholar 

  5. Hupert M, Muck A, Wang J, Stotter J, Cvackova Z, Haymond S, Show Y, Swain GM (2003) Diam Relat Mater 12:1940

    Article  CAS  Google Scholar 

  6. Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2015) Chem Rev 115:13362

    Article  PubMed  Google Scholar 

  7. Farhat A, Keller J, Tait S, Radjenovic J (2015) Environ Sci Technol 49:14326

    Article  CAS  PubMed  Google Scholar 

  8. Divyapriya G, Nidheesh PV (2021) Curr Opin Solid State Mater Sci 25:100921

    Article  CAS  Google Scholar 

  9. Chen L, Lei CH, Li Z, Yang B, Zhang X, Lei L (2018) Chemosphere 210:516

    Article  CAS  PubMed  Google Scholar 

  10. Olmez-Hanci T, Arslan-Alaton I (2013) Chem Eng J 224:10

    Article  CAS  Google Scholar 

  11. Guerra-Rodríguez S, Rodríguez E, Singh DN, Rodríguez-Chueca J (2018) Water 10:1828

    Article  Google Scholar 

  12. Song H, Yan L, Jiang J, Ma J, Zhang Z, Zhang J, Liu P, Yang T (2018) Water Res 128:393

    Article  CAS  PubMed  Google Scholar 

  13. Zhang T, Chen Y, Wang Y, Le Roux J, Yang Y, Croué JP (2014) Environ Sci Technol 48:5868

    Article  CAS  PubMed  Google Scholar 

  14. Giannakis S, Lin KYA, Ghanbari F (2021) Chem Eng J 406:127083

    Article  CAS  Google Scholar 

  15. Mackuľak T, Vojs M, Grabic R, Golovko O, Vojs Staňová A, Birošová L, Medveďová A, Híveš J, Gál M, Kromka A, Hanusová A (2016) Monatsh Chem 147:97

    Article  Google Scholar 

  16. Candia-Onfray CH, Espinoza N, Silva EBS, Toledo-Neira C, Espinoza LC, Santander R, García V, Salazar R (2018) Chemosphere 206:709

    Article  CAS  PubMed  Google Scholar 

  17. Bagastyo AY, Batstone DJ, Rabaey K, Radjenovic J (2013) Water Res 47:242

    Article  CAS  PubMed  Google Scholar 

  18. Domínguez JR, González T, Correia S (2021) J Environ Manage 298:113538

    Article  PubMed  Google Scholar 

  19. Ammar HB, Brahim MB, Abdelhédi R, Samet Y (2016) Sep Purif Technol 157:9

    Article  CAS  Google Scholar 

  20. Murugananthan M, Latha SS, Raju GB, Yoshihara S (2011) Sep Purif Technol 79:56

    Article  CAS  Google Scholar 

  21. Lan Y, Coetsier C, Causserand CH, Serrano KG (2017) Electrochim Acta 231:309

    Article  CAS  Google Scholar 

  22. Radjenovic J, Petrovic M (2017) J Hazard Mater 333:242

    Article  CAS  PubMed  Google Scholar 

  23. Titchou FE, Zazou H, Afanga H, Gaayda JE, Akbour RA, Hamdani M, Oturan MA (2021) J Electroanal Chem 897:115560

    Article  CAS  Google Scholar 

  24. Alcocer S, Picos A, Uribe AR, Pérez T, Peralta-Hernández JM (2018) Chemosphere 205:682

    Article  CAS  PubMed  Google Scholar 

  25. Yaseen D, Scholz M (2019) Int J Environ Sci Technol 16:1193

    Article  CAS  Google Scholar 

  26. Delory GE, King EJ (1945) Biochem J 39:245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boni JE, Brickl RS, Dressman J (2007) J Pharm Pharmacol 59:1375

    Article  CAS  PubMed  Google Scholar 

  28. Hammett LP (1937) J Am Chem Soc 59:96

    Article  CAS  Google Scholar 

  29. Kuchtová G, Chýlková J, Váňa J, Vojs M, Dušek L (2020) J Electroanal Chem 863:114036

    Article  Google Scholar 

  30. Song H, Yan L, Ma J, Jiang J, Cai G, Zhang W, Zhang Z, Zhang J, Yang T (2017) Water Res 116:182

    Article  CAS  PubMed  Google Scholar 

  31. Farhat A, Keller J, Tait S, Radjenovic J (2018) Electrochem Commun 89:14

    Article  CAS  Google Scholar 

  32. Dušek L (2010) Chem Listy 104:846

    Google Scholar 

  33. Kapałka A, Fóti G, Comninellis CH (2008) J Appl Electrochem 38:7

    Article  Google Scholar 

  34. Fabiańska A, Ofiarska A, Fiszka-Borzyszkowska A, Stepnowski P, Siedlecka EM (2015) Chem Eng J 276:274

    Article  Google Scholar 

  35. Farhat A, Keller J, Tait S, Radjenovic J (2017) Chem Eng J 330:1265

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to prof. Ing. Ladislav Novotný, DrSc., Dr. for discussions and to the Student Grant Competition 2021 (SGS_2021_003) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libor Dušek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchtová, G., Mikulášek, P. & Dušek, L. The role of dye’s structure on the degradation rate during indirect anodic oxidation. Monatsh Chem 153, 237–243 (2022). https://doi.org/10.1007/s00706-022-02897-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02897-w

Keywords

Navigation