Skip to main content
Log in

Electrochemical Oxidation of Direct Blue 14 in Aqueous Phase: Experimental and Kinetic Studies

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The paper reports the oxidative decolorization of the direct blue 14 (DB-14) dye in an aqueous phase via an ecologically friendly electrochemical advanced oxidation process. The investigation of several experimental conditions such as the solution pH, initial concentrations of the oxidant, the dye, and current density was carried out in a single-compartment electrolytic cell with the use of an iron sheet as anodic material, the graphite plate being the cathodic material. The optimal operating conditions were found to be as follows: (DB-14)0—500 mg/L; (H2O2)0—35 mM concentration; pH 3 using 0.1 M Na2SO4 salt as supportive electrolyte at room temperature. It has been observed that the dissolved iron (Fe2+) content from the anode was continuously increasing in aqueous media on passing a constant current to it. Initially, it was 1.58 mM, then 4.46 mM (after 30 min of reaction time), and 5.35 mM of dissolved Fe2+ for 60 min of the reaction time. The study of kinetics for the decolorization of DB-14 shows that the degradation kinetics follows the second order, with the reaction rate being constant: k2—0.5 × 10–4 mgL–1 min–1. Electrochemical oxidation of DB-14 reduces the chemical oxygen demand of the colored solution. The unit energy demand, expressed in kWh/kg of the chemical oxygen demand reduced, for optimum experimental parameters have also been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Carvalho, S.S.F. and Carvalho, N.M.F., J. Environ. Manage., 2017, vol. 187, pp. 82–88.

    Article  Google Scholar 

  2. Dang, T.D., Banerjee, A.N., Tran, Q.T., and Roy, S., J. Phys. Chem. Solids, 2016, vol. 98, pp. 50–58.

    Article  Google Scholar 

  3. Alvi, M.A., Al-ghamdi, A.A., and Shaheerakhtar, M., Mater. Lett., 2017, vol. 204, pp. 12–15.

    Article  Google Scholar 

  4. Lee, W.P.C., Wong, F.H., Attenborough, N.K., Kong, X.Y., et al., J. Environ. Manage., 2017, vol. 197, pp. 63–69.

    Article  Google Scholar 

  5. Singh, R.L., Singh, P.K., and Singh, R.P., Int. Biodeterior. Biodegrad., 2015, vol. 104, pp. 21–31.

    Article  Google Scholar 

  6. Leite, L.S., Maselli, B.S., Umbuzeiro, G.A., and Nogueira, R.F.P., Chemosphere, 2016, vol. 148, pp. 511–517.

    Article  Google Scholar 

  7. Kalal, S., Chanderia, K., Meghwal, K., Chouhan, N.P.S., et al., Indian J. Chem. Technol., 2015, vol. 22, pp. 148–154.

    Google Scholar 

  8. Velmurugan, R., Krishnakumar, B., Kumar, R., and Swaminathan, M., Arab. J. Chem., 2012, vol. 5, pp. 447–452.

    Article  Google Scholar 

  9. Nadaroglu, H., Cicek, S., and Alayli, A., Spectrochim. Acta, Part A, 2016, vol. 172, pp. 2–8.

    Article  Google Scholar 

  10. Rao, A.N.S. and Venkatarangaiah, V.T., J. Electrochem. Sci. Eng., 2013, vol. 3, pp. 167–184.

    Google Scholar 

  11. Dimoglo, A., Akbulut, H.Y., Cihan, F., and Karpuzcu, M., Clean Technol. Environ. Policy, 2004, vol. 6, pp. 288–295.

    Article  Google Scholar 

  12. Kayan, B., Demirel, M., and Gizir, A.M., J. Hazard. Mater., 2010, vol. 177, pp. 95–102.

    Article  Google Scholar 

  13. Bensalah, N., Alfaro, M.A.Q., and Martinez-Huitle, C.A., Chem. Eng. J., 2009, vol. 149, pp. 348–352.

    Article  Google Scholar 

  14. Kourdali, S., Badis, A., and Boucherit, A., Ecotoxicol. Environ. Saf., 2014, vol. 110, pp. 110–120.

    Article  Google Scholar 

  15. Olvera-Vargas, H., Oturan, N., and Oturan, M.A., Proc. 3rd Int. Conf. on Development, Energy, Environment, Economics, Athens: World Sci. Eng. Acad. Soc., 2012, pp. 99–104.

  16. Lucas, M.S., Dyes Pigm., 2006, vol. 71, pp. 236–244.

    Article  Google Scholar 

  17. Ghoneim, M.M., El-Desoky, H.S., and Zidan, N.M., Desalination, 2011, vol. 274, pp. 22–30.

    Article  Google Scholar 

  18. Sahinkaya, S., J. Ind. Eng. Chem., 2013, vol. 19, pp. 601–605.

    Article  Google Scholar 

  19. Fernades Rego, F.E., Sales Solano, A.M., da Costa Soares, I.C., da Silva, D.R., et al., J. Environ. Chem. Eng., 2014, vol. 2, pp. 875–880.

    Article  Google Scholar 

  20. Martínez, S.S. and Uribe, E.V., Ultrason. Sonochem., 2012, vol. 19, pp. 174–178.

    Article  Google Scholar 

  21. Ozcan, A. and Gencten, M., Chemosphere, 2016, vol. 146, pp. 245–252.

    Article  Google Scholar 

  22. Khataee, A.R., Vatanpour, V., Amani Ghadim, A.R., J. Hazard. Mater., 2009, vol. 161, pp. 1225–1233.

    Article  Google Scholar 

  23. El-sayed, G.O., Teleb, S.M., and Gouda, H.M., J. Basic Environ. Sci., 2017, vol. 4, pp. 18–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabir Ghosh.

Ethics declarations

The authors declare to have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damodhar Ghime, Prabir Ghosh Electrochemical Oxidation of Direct Blue 14 in Aqueous Phase: Experimental and Kinetic Studies. Surf. Engin. Appl.Electrochem. 56, 282–288 (2020). https://doi.org/10.3103/S1068375520030047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520030047

Keywords:

Navigation