Skip to main content
Log in

Effect of positive In(III) doped in nickel oxide nanostructure at modified glassy carbon electrode for determination of allura red in soft drink powders

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The current study aimed to modify a glassy carbon electrode with raspberry-like In3+/NiO hierarchical nanostructure as a novel and highly sensitive electrochemical sensor for effectively detection of allura red colorant, which was then characterized by techniques of energy-dispersive X-ray analysis, scanning electron microscopy, and X-ray diffraction. Electrochemical impedance spectroscopy, cyclic voltammetry, differential pulse voltammetry, and chronoamperometry were employed to calculate the oxidation peak current of colorant, resulting in linear range of 0.01–700 µM (R2 = 0.9999) and limit of detection of 4.1 nM. The developed modifier was practically recruited for the detection of allura red in phosphate buffer solution (pH 4) as well as the real samples of soft drinks, the results of which successfully showed a high performance for the electrode.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Siddiquee S, ShafriShafwanah AM (2020) Toxicology and analytical methods for the analysis of allura red (E129) in food and beverage products: a current perspective. In: Grumezescu AM, Holban AM (eds) Safety issues in beverage production, vol 18, chapter 10. Elsevier, Amsterdam, p 335

    Chapter  Google Scholar 

  2. Pourreza N, Rastegarzadeh A, Larki A (2011) Food Chem 126:1465

    Article  CAS  Google Scholar 

  3. Almeida Silva T, Wong A, Fatibello-Filho O (2020) Talanta 209:120588

    Article  Google Scholar 

  4. Gan T, Sun J, Zhu H, Zhu J, Liu D (2013) J Solid State Electrochem 17:2193

    Article  CAS  Google Scholar 

  5. Penagos-Llanos J, García-Beltrán O, Calderón JA, Nagles E, Hurtado JJ (2019) Electroanalysis 31:695

    Article  CAS  Google Scholar 

  6. Coloma A, del Pozo M, RutMartínez-Moro R, Blanco E, Atienzar P, Sánchez L, DoloresPetit-Domínguez M, Casero E, Quintana C (2021) Food Chem 345:128628

    Article  CAS  PubMed  Google Scholar 

  7. Al Shamari YMG, Alwarthan AA, Siddiqui MR (2020) J King Saud Univ Sci 32:1135

    Article  Google Scholar 

  8. Soylak M, EmreUnsal Y, Tuzen M (2011) Food Chem Toxicol 49:1183

    Article  CAS  PubMed  Google Scholar 

  9. Deroco PB, Medeiros RA, Rocha-Filho RC, Fatibello-Filho O (2018) Food Chem 247:66

    Article  CAS  PubMed  Google Scholar 

  10. Yoshioka N, Ichihashi K (2020) Talanta 74:1408

    Article  Google Scholar 

  11. Huang HY, Chiu CW, Sue SL, Cheng CF (2003) J Chromatogr A 995:29

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, Zhang Y (2021) Int J Therm Sci 164:106897

    Article  CAS  Google Scholar 

  13. Foroughi MM, Jahani SH, Aramesh-Boroujeni Z, VakiliFathabadi M, Hashemipour Rafsanjani H, RostaminasabDolatabad M (2021) Michrochem J 170:106679

    Article  CAS  Google Scholar 

  14. Zhang Y, Liu G, Zhang C, Chi Q, Zhang T, Feng Y, Zhu K, Zhang Y, Chen Q, Cao D (2020) Chem Eng J 392:123652

    Article  CAS  Google Scholar 

  15. Jandaghi N, Jahani Sh, Foroughi MM, Kazemipour M, Ansari M (2020) Microchim Acta 187:24

    Article  CAS  Google Scholar 

  16. Yang Y, Chen H, Zou X, Shi XL, Liu WD, Feng L, Suo G, Hou X, Ye X, Zhang L, Sun C, Li H, Wang C, Chen ZG (2020) ACS Appl Mater Interfaces 12:24845

    Article  CAS  PubMed  Google Scholar 

  17. Jahani SH (2018) Anal Bioanal Electrochem 10:739

    CAS  Google Scholar 

  18. Zhang X, Zhang Y (2021) Int J Therm Sci 163:106826

    Article  CAS  Google Scholar 

  19. Arefi Nia N, Foroughi MM, Jahani SH (2020) Talanta 222:121563

    Google Scholar 

  20. Kang Y, Zhang YH, Shi Q, Shi H, Xue D, Shi FN (2021) J Colloid Interface Sci 558:705

    Article  Google Scholar 

  21. Sheibani N, Kazemipour M, Jahani SH, Foroughi MM (2019) Microchem J 149:103980

    Article  CAS  Google Scholar 

  22. VakiliFathabadi M, Hashemipour Rafsanjani H, Foroughi MM, Jahani SH, Arefi Nia N (2020) J Electrochem Soc 167:027509

    Article  Google Scholar 

  23. Yan SR, Foroughi MM, Safaei M, Jahani SH, Ebrahimpour N, Borhani F, RezaeiZade BN, Aramesh-Boroujeni Z, Foog LK (2020) RSC Adv 155:184

    CAS  Google Scholar 

  24. Zhang Y, Li C, Jia D, Zhang D, Zhang X (2015) Int J Mach Tools Manuf 99:19

    Article  Google Scholar 

  25. Foroughi MM, Jahani SH, Aramesh-Boroujeni Z, Dolatabad MR, Shahbazkhani K (2021) Ceram Int 47:19727

    Article  CAS  Google Scholar 

  26. Yang M, Li C, Luo L, Li R, Long Y (2021) Int Commun Heat Mass Transfer 125:105317

    Article  CAS  Google Scholar 

  27. Fathi Z, Jahani Sh, ShahidiZandi M, Foroughi MM (2020) Anal Bioanal Chem 412:1011

    Article  CAS  PubMed  Google Scholar 

  28. Duan Z, Li C, Zhang Y, Dong L, Bai X, Yang M, Jia D, Li R, Cao H, Xu X (2021) Chin J Aeronaut 34:33

    Article  Google Scholar 

  29. Jafari A, Shareghi B, Hosseini-Koupaei M, Farhadian S (2020) Monatsh Chem 151:429

    Article  CAS  Google Scholar 

  30. Zhu Y, Yan Z, Chi M, Li M, Wang C, Lu X (2018) Talanta 181:431

    Article  CAS  PubMed  Google Scholar 

  31. ÖrenVarol T (2021) Monatsh Chem 152:777

    Article  Google Scholar 

  32. Dai Z, Xie J, Fan X, Ding X, Liu W, Zhou S, Ren X (2020) Chem Eng J 397:125520

    Article  CAS  Google Scholar 

  33. Hajmalek H, Jahani Sh, Foroughi MM (2021) ChemistrySelect 6:8797

    Article  CAS  Google Scholar 

  34. Mohammadi A, Ghasemi Z (2021) Spectrochim Acta A 244:118864

    Article  Google Scholar 

  35. Moarefdoust MM, Jahani Sh, Moradalizadeh M, Motaghi MM, Foroughi MM (2021) Anal Methods 13:2396

    Article  CAS  PubMed  Google Scholar 

  36. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  37. Yu L, Shi M, Yue X, Qu L (2016) Sens Actuators B 225:398

    Article  CAS  Google Scholar 

  38. Li XQ, Zhang QH, Ma K, Li HM, Guo Z (2015) Food Chem 182:316

    Article  CAS  PubMed  Google Scholar 

  39. Al-Degs YS (2009) Food Chem 117:485

    Article  CAS  Google Scholar 

  40. Dinc E, Baydan E, Kanbur M, Onur F (2002) Talanta 58:579

    Article  CAS  PubMed  Google Scholar 

  41. El-Sheikh AH, Al-Degs YS (2013) Dyes Pigment 97:330

    Article  CAS  Google Scholar 

  42. Combeau S, Chatelut M, Vittori O (2002) Talanta 56:115

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Zhang X, Lu X, Yang J, Wu K (2010) Food Chem 122:909

    Article  CAS  Google Scholar 

  44. Sierra-Rosales P, Toledo-Neira C, Ortúzar-Salazar P, Squella JA (2019) Electroanalysis 31:883

    Article  CAS  Google Scholar 

  45. Rodrıguez JA, Juarez MG, Galan-Vidal CA, Miranda JM, Barrado E (2015) Electroanalysis 27:2329

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Foroughi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moarefdoust, M.M., Jahani, S., Moradalizadeh, M. et al. Effect of positive In(III) doped in nickel oxide nanostructure at modified glassy carbon electrode for determination of allura red in soft drink powders. Monatsh Chem 152, 1515–1525 (2021). https://doi.org/10.1007/s00706-021-02863-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02863-y

Keywords

Navigation