Skip to main content
Log in

Electrocatalytic oxidation and flow injection analysis of formaldehyde at binary metal oxides (Co3O4–NiO and CuO–Co3O4) modified pencil graphite electrodes

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this work, a highly efficient performance of bimetallic thin films as their oxide forms (Co3O4–NiO and CuO–Co3O4) modified on pencil graphite electrodes (PGEs) was presented for electrocatalytic oxidation of formaldehyde. In addition, a sensitive and selective amperometric determination of formaldehyde in flow injection analysis system have been first performed using binary transition metal oxides modified PGEs. Co3O4–NiO and CuO–Co3O4 films were electrochemically deposited on the PGE surface using cyclic voltammetric procedures. The recorded cyclic voltammograms in the presence of formaldehyde in 0.10 M NaOH containing 0.10 M KCl showed that the prepared binary transition metal oxides modified PGEs exhibited a higher electrocatalytic activity than single metal oxide thin films modified PGEs towards oxidation of formaldehyde. The linear responses based on electrocatalytic oxidation of formaldehyde were determined as 2.5–5000 μM and 0.25–1000 μM for Co3O4–NiO/PGE and CuO–Co3O4/PGE, respectively. Moreover, limit of detections and sensitivities were estimated as 0.73 μM and 81.8 μA mM−1 cm−2 and 0.09 μM and 166 μA mM−1 cm−2 for Co3O4–NiO/PGE and CuO–Co3O4/PGE, respectively. The results from real sample studies proved that the fabricated FI-amperometric sensors enable high applicability towards determination of formaldehyde in real water samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shakeel K, Javaid M, Muazzam Y, Naqvi SR, Taqvi SAA, Uddin F, Mehran MT, Sikander U, Niazi MBK (2020) Processes 8:571

    CAS  Google Scholar 

  2. Duong A, Steinmaus C, McHale CM, Vaughan CP, Zhang L (2011) Mutat Res 728:118

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bernardini L, Barbosa E, Charão MF, Brucker N (2020). Drug Chem Toxicol. https://doi.org/10.1080/01480545.2020.1795190

    Article  PubMed  Google Scholar 

  4. IARC (2006) Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. In: IARC monographs on the evaluation of carcinogenic risks to human, vol 88

  5. Baan R, Grosse Y, Straif K, Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V (2009) Lancet Oncol 10:1143

    PubMed  Google Scholar 

  6. Zhang K, Liu C, Li S, Fan J (2019) J Chromatogr A 1589:39

    CAS  PubMed  Google Scholar 

  7. Zhu H, She J, Zhou M, Fan X (2019) Sens Actuators B 283:182

    CAS  Google Scholar 

  8. Kartal Temel N, Gürkan R (2018) J AOAC Int 101:1763

    Google Scholar 

  9. Jiang L, Hub Q, Chen T, Min D, Yuan HQ, Bao GM (2020) Spectrochim Acta A Mol Biomol Spectrosc 228:117789

    CAS  PubMed  Google Scholar 

  10. Nie X, Chen Z, Tian Y, Chend S, Qu L, Fan M (2021) Food Chem 340:127930

    CAS  PubMed  Google Scholar 

  11. Qiao J, Chang J, Wang H, Sun T, Dong C (2017) Anal Lett 50:80

    CAS  Google Scholar 

  12. Xi H, Chen X, Cao Y, Xu J, Ye C, Deng D, Zhang J, Huang G (2020) Microchem J 156:104846

    CAS  Google Scholar 

  13. Momenia S, Sedaghati F (2018) Microchem J 143:64

    Google Scholar 

  14. Nag S, Pradhan S, Naskar H, Roy RB, Tudu B, Pramanik P, Bandopadhyay R (2021) IEEE Sens J 21:12019

    CAS  Google Scholar 

  15. Gorkov KV, Talagaeva NV, Kleinikova SA, Dremova NN, Vorotyntsev MA, Zolotukhina EV (2020) Electrochim Acta 345:136164

    CAS  Google Scholar 

  16. Chen Y, Qiao Z, Liu H, Yuan Q, Xie Q, Yao S (2020) Analyst 145:7546

    CAS  PubMed  Google Scholar 

  17. Ehsan MA, Rehman A (2020) Anal Methods 12:4028

    CAS  PubMed  Google Scholar 

  18. Hajilari F, Farhadi K, Eskandari H, Allahnouri F (2020) Electrochim Acta 355:136751

    CAS  Google Scholar 

  19. Mei H, Wu W, Yu B, Wu H, Wang S, Xia Q (2016) Sens Actuators B 223:68

    CAS  Google Scholar 

  20. Wang J (2012) Microchim Acta 177:245

    CAS  Google Scholar 

  21. Malekzad H, Zangabad PS, Mirshekari H, Karimi M, Hamblin MR (2017) Nanotechnol Rev 6:301

    CAS  PubMed  Google Scholar 

  22. George JM, Antony A, Mathew B (2018) Microchim Acta 185:358

    Google Scholar 

  23. Fazio E, Spadaro S, Corsaro C, Neri G, Leonardi SG, Neri F, Lavanya N, Sekar C, Donato N, Neri G (2021) Sensors 21:2494

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ozdokur KV, Tatli AY, Yilmaz B, Kocak S, Ertas FN (2016) Int J Hydrog Energy 41:5927

    CAS  Google Scholar 

  25. Ozdokur KV, Demir B, Atman E, Tatli AY, Yilmaz B, Demirkol DO, Kocak S, Timur S, Ertas FN (2016) Sens Actuators B 237:291

    CAS  Google Scholar 

  26. Rajeev R, Datta R, Varghese A, Sudhakar YN, George L (2021) Microchem J 163:105910

    CAS  Google Scholar 

  27. Shah A, Akhtar M, Aftab S, Shah AH, Kraatz HB (2017) Electrochim Acta 241:281

    CAS  Google Scholar 

  28. Wanga D, Huang B, Liu J, Guo X, Abudukeyoumu G, Zhang Y, Ye BC, Li Y (2018) Biosens Bioelectron 102:389

    Google Scholar 

  29. Ramachandran K, Kumar TR, Babu KJ, Kumar GG (2016) Sci Rep 6:36583

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Habibi B, Dadashpour E (2013) Int J Hydrog Energy 38:5425

    CAS  Google Scholar 

  31. Nachaki EO, Ndangili PM, Naumih NM, Masika E (2018) Chem Sel 3:384

    CAS  Google Scholar 

  32. Wen X, Xi J, Long M, Tan L, Wang J, Yan P, Zhong L, Liu Y, Tang A (2017) J Electroanal Chem 805:68

    CAS  Google Scholar 

  33. Azizi SN, Ghasemi S, Amiripour F (2016) Sens Actuators B 227:1

    CAS  Google Scholar 

  34. Trafela Š, Zavašnik J, Šturm S, Rožman KŽ (2019) Electrochim Acta 309:346

    CAS  Google Scholar 

  35. Yang L, Yang J, Dong Q, Zhou F, Wang Q, Wang Z, Huang K, Yu H, Xiong X (2021) J Electroanal Chem 881:114965

    CAS  Google Scholar 

  36. Zhang S, Wen X, Long M, Xi J, Hu J, Tang A (2020) J Alloys Compd 829:154568

    CAS  Google Scholar 

  37. Jing Z, Lin X (2010) Chin J Chem 28:2359

    CAS  Google Scholar 

  38. Raoof JB, Hosseini SR, Ojani R, Aghajani S (2015) J Mol Liq 204:106

    CAS  Google Scholar 

  39. Kavian S, Azizi SN, Ghasemi S (2016) Int J Hydrog Energy 41:14026

    CAS  Google Scholar 

  40. Shahid MM, Pandikumar A, Golsheikh AM, Huang NM, Lim HN (2014) RSC Adv 4:62793

    CAS  Google Scholar 

  41. Salimi A, Hallaj R, Soltanian S, Mamkhezri H (2007) Anal Chim Acta 594:24

    CAS  PubMed  Google Scholar 

  42. Heidari H, Habibi E (2016) Microchim Acta 183:2259

    CAS  Google Scholar 

  43. Findik M, Bingol H, Erdem A (2021) Sens Actuators B 329:129120

    CAS  Google Scholar 

  44. Yaman YT, Bolat G, Saygin TB, Abaci S (2021) Sens Actuators B 328:128986

    CAS  Google Scholar 

  45. Sreekumar A, Navaneeth P, Suneesh PV, Nair BG, Babu TGS (2020) Microchim Acta 187:113

    CAS  Google Scholar 

  46. Senel M, Alachkar A (2021) Lab Chip 21:405

    CAS  PubMed  Google Scholar 

  47. Ayaz S, Dilgin Y, Apak R (2020) Microchem J 159:105457

    CAS  Google Scholar 

  48. Ayaz S, Karakaya S, Emir G, Dilgin DG, Dilgin Y (2020) Microchem J 154:104586

    CAS  Google Scholar 

  49. Prasertying P, Yamkesorn M, Chimsaard K, Thepsuparungsikul N, Chaneam S, Kalcher K, Chaisuksant R (2020) J Sci Adv Mater Dev 5:330

    Google Scholar 

  50. Sağlam Ö, Kızılkaya B, Uysal H, Dilgin Y (2016) Talanta 147:315

    PubMed  Google Scholar 

  51. Lany S (2015) J Phys Condens Matter 27:283203

    PubMed  Google Scholar 

  52. Nagarajan S, Vasudevan V, Jayaraman T, Arumugam R, Vairamuthu R (2020) Int J Energy Res 44:10206

    CAS  Google Scholar 

  53. Chavhan MP, Sethi SR, Ganguly S (2020) Electrochim Acta 347:136277

    CAS  Google Scholar 

  54. Salimi A, Sharifi E, Noorbakhsh A, Soltanian S (2006) Electrochem Commun 8:1499

    CAS  Google Scholar 

  55. Esmaeeli A, Ghaffarinejad A, Zahedia A, Vahidi O (2018) Sens Actuators B 266:294

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Çanakkale Onsekiz Mart University the Scientific Research Coordination Unit for financial support, project number: FBA-2019-2743.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didem Giray Dilgin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emir, G., Karakaya, S., Ayaz, S. et al. Electrocatalytic oxidation and flow injection analysis of formaldehyde at binary metal oxides (Co3O4–NiO and CuO–Co3O4) modified pencil graphite electrodes. Monatsh Chem 152, 1491–1503 (2021). https://doi.org/10.1007/s00706-021-02861-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02861-0

Keywords

Navigation