Skip to main content
Log in

Simple and sensitive electrochemical analysis of riboflavin at functionalized carbon nanofiber modified carbon nanotube sensor

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The present work demonstrates the development of functionalized carbon nanofiber and carbon nanotube composite paste electrode towards the electrochemical analysis of riboflavin (RF) in 0.2 M phosphate buffer solution of pH 7.0 in the presence of ascorbic acid. RF shows the enhanced electrochemical reaction at the modified electrode surface with well-resolved and distinct redox peaks than bare carbon nanotube paste electrode. The material characteristics were analyzed using field emission scanning electron microscopy, X-ray powder diffraction, electrochemical impedance spectroscopy, and cyclic voltammetry methods. The proposed electrode gives a fine linear relation between the concentration of RF and oxidation peak current in the linear range of 5.0–60.0 µM with the limit of detection of 15.35 nM and limit of quantification of 51.18 nM. Also, the sensing capability of the electrode for RF analysis was tested in B-complex capsule with fine recoveries.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mehmeti E, Stanković DM, Chaiyo S, Švorc Ľ, Kalcher K (2016) Microchim Acta 183:1619

    Article  CAS  Google Scholar 

  2. Sá ÉS, Da Silva PS, Jost CL, Spinelli A (2015) Sens Actuators B Chem 209:423

    Article  CAS  Google Scholar 

  3. Ly SY, Yoo HS, Ahn JY, Nam KH (2011) Food Chem 127:270

    Article  CAS  Google Scholar 

  4. Ensafi AA, Heydari-Bafrooei E, Amini M (2012) Biosens Bioelectron 31:376

    Article  CAS  PubMed  Google Scholar 

  5. Nezamzadeh-Ejhieh A, Pouladsaz P (2014) J Ind Eng Chem 20:2146

    Article  CAS  Google Scholar 

  6. Hareesha N, Manjunatha JG (2020) J Sci Adv Mater Devices 5:502

    Article  Google Scholar 

  7. Sebrell WH, Butler RE (1939) Public Health Rep 54:2121

    Article  CAS  Google Scholar 

  8. Qi H, Cao Z, Hou L (2011) Spectrochim Acta A 78:211

    Article  CAS  Google Scholar 

  9. Bartzatt R, Wol T (2014) Int Sch Res Notices 2014:1

    Article  Google Scholar 

  10. Hampel D, York ER, Allen LH (2012) Chromatogr J B 903:11

    Article  CAS  Google Scholar 

  11. Petteys BJ, Frank EL (2011) Clin Chim Acta 412:38

    Article  CAS  PubMed  Google Scholar 

  12. Koop J, Monschein S, Macheroux EP, Knaus T, Macheroux P (2014) Food Chem 146:94

    Article  CAS  PubMed  Google Scholar 

  13. Ziak LU, Majek P, Hrobonova K, Cacho F, Sadecka J (2014) Food Chem 159:282

    Article  CAS  PubMed  Google Scholar 

  14. Mattivi F, Monetti A, Vrhovsek U, Tonon D, Andres-Lacueva C (2000) J Chromatogr A 888:121

    Article  CAS  PubMed  Google Scholar 

  15. Chu KO, Tin KC (1998) Anal Lett 31:2707

    Article  CAS  Google Scholar 

  16. Cataldi TRI, Nardiello D, Carrara V, Ciriello R, Benedetto GED (2003) Food Chem 82:309

    Article  CAS  Google Scholar 

  17. Caelen I, Kalman A, Wahlström L (2004) Anal Chem 76:137

    Article  CAS  PubMed  Google Scholar 

  18. Perez C, Simões FR, Codognoto L (2015) J Solid State Electrochem 20:2471

    Article  CAS  Google Scholar 

  19. Hareesha N, Manjunatha JG, Amrutha BM (2021) J Electron Mater 50:1230

    Article  CAS  Google Scholar 

  20. Shashanka R, Taslimi P, Karaoglanli AC, Uzun O, Alp E, Jayaprakash GK (2021) Arab J Chem 14:103180

    Article  CAS  Google Scholar 

  21. Manjunatha JG, Kumara Swamy BE, Shreenivas MT, Mamatha GP (2012) Anal Bioanal Electrochem 4:225

    Google Scholar 

  22. Shashanka R, Esgin H, Yilmaz VM, Caglar Y (2020) J Sci Adv Mater Devices 5:185

    Article  Google Scholar 

  23. Manjunatha JG, Kumara Swamy BE, Deraman M, Mamatha GP (2013) Int J Pharm Pharm Sci 5:355

    CAS  Google Scholar 

  24. Gururaj KJ, Kumara Swamy BE, Shashanka R, Sharma SC, Flores-Moreno R (2021) J Mol Liq 334:116348

    Article  CAS  Google Scholar 

  25. Manjunatha JG, Kumara Swamy BE, Deraman M, Mamatha GP (2012) Pharm Chem 4:2489

    CAS  Google Scholar 

  26. Bandzuchová L, Selesovská R, Navrátil T, Chylková J, Novotny L (2012) Electrochim Acta 75:316

    Article  CAS  Google Scholar 

  27. Girish T, Manjunatha JG, Raril C, Hareesha N (2019) ChemistrySelect 7:2168

    Google Scholar 

  28. Manjunatha JG, Raril C, Hareesha N, Charithra MM, Pushpanjali PA, Girish T, Ravishankar DK, Mallappaji SC, Gowda J (2020) Open Chem Eng J 14:90

    Article  CAS  Google Scholar 

  29. Charitra MM, Manjunatha JG (2021) Mor J Chem 9:7

    Google Scholar 

  30. Girish T, Manjunatha JG, Ravishankar DK, Siddaraju G (2019) Methods Objects Chem Anal 14:216

    Article  CAS  Google Scholar 

  31. Hareesha N, Manjunatha JG (2020) J Iran Chem Soc 17:1507

    Article  CAS  Google Scholar 

  32. Gribat LC, Babauta JT, Beyenal H, Wall NA (2017) J Electroanal Chem 798:42

    Article  CAS  Google Scholar 

  33. Lavanya N, Radhakrishnan S, Sekar C, Navaneethan M, Hayakawa Y (2013) Analyst 138:2066

    Article  CAS  Google Scholar 

  34. Ejhieh AN, Pouladsaz P (2014) J Eng Ind Chem 20:2146

    Article  CAS  Google Scholar 

  35. Ensaf AA, Bafrooei EH, Amini M (2012) Biosens Bioelectron 31:376

    Article  CAS  Google Scholar 

  36. Yuan Y, Wang L, Wang Y, Cui X, Wang H, Ding G (2012) J Nanoeng Nanosyst 226:83

    Google Scholar 

  37. Pushpanjali PA, Manjunatha JG, Amrutha BM, Hareesha N (2020). Mater Res Innov. https://doi.org/10.1080/14328917.2020.1842589

    Article  Google Scholar 

  38. Hareesha N, Manjunatha JG (2021) Sci Rep 11:12797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hareesha N, Manjunatha JG, Amrutha BM, Sreeharsha N, Basheeruddin Asdaq SM, Md Khalid A (2021) Colloids Surf. A Physicochem Eng Asp 626:27042

    CAS  Google Scholar 

  40. Morgan P (2005) Carbon Fibers and Their Composites. Taylor & Francis Group, CRC Press, Boca Raton

    Book  Google Scholar 

  41. Liwen Ji, Zhang X (2009) Nanotechnology 20:155705

    Article  CAS  Google Scholar 

  42. Luhrs CC, Moberg M, Maxson A, Brewer L, Menon S (2014) Inorganics 2:211

    Article  CAS  Google Scholar 

  43. Soleimani H, Yahya N, Baig MK, Khodapanah L, Sabet M, Burda M, Oechsner A, Awang M (2015) Oil Gas Res 1:1000104

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from VGST, Bangalore under Research project. No. KSTePS/VGST-KFIST (L1)2016-2017/GRD-559/2017-18/126/333, 21/11/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Manjunatha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varun, D.N., Manjunatha, J.G., Hareesha, N. et al. Simple and sensitive electrochemical analysis of riboflavin at functionalized carbon nanofiber modified carbon nanotube sensor. Monatsh Chem 152, 1183–1191 (2021). https://doi.org/10.1007/s00706-021-02839-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02839-y

Keywords

Navigation