Skip to main content
Log in

Ascorbic acid: an efficient organocatalyst for environmentally benign synthesis of indole-substituted 4H‑chromenes

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

An expedient, straightforward, and efficient one-pot three-component synthesis of biologically relevant indole-substituted 4H-chromenes has been developed by the reaction of various indoles, malononitrile, and salicylaldehydes using a catalytic amount of ascorbic acid in aqueous ethanol at room temperature. The significant features of the developed protocol are the clean reaction profile, operational simplicity, non-hazardous experimental conditions, no column chromatographic purification, use of an inexpensive, commercially available, and non-toxic metal-free catalyst, accomplishment of good to excellent yields, and large-scale synthesis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elinson MN, Dorofeev AS, Miloserdov FM, Ilovaisky AI, Feducovich SK, Belyakov PA, Nikishin GI (2008) Adv Synth Catal 350:591

    Article  CAS  Google Scholar 

  2. Kidwai M, Saxena S, Khan MK, Thukral SS (2005) Bioorg Med Chem Lett 15:4295

    Article  CAS  Google Scholar 

  3. Ellis GP (1977) Chromenes, chromanones, and chromones. In: Weissberger A, Taylor EC (eds) The chemistry of heterocyclic compounds, chapter 2. Wiley, New York, p 11

    Chapter  Google Scholar 

  4. Hafez EAA, Elnagdi MH, Elagamey AGA, El-Taweel FMAA (1987) Heterocycles 26:903

    Article  CAS  Google Scholar 

  5. Bandini M, Eichholzer A (2009) Angew Chem Int Ed 48:9608

    Article  CAS  Google Scholar 

  6. Das D, Pratihar S, Roy S (2013) Tetrahedron Lett 54:335

    Article  CAS  Google Scholar 

  7. Mallick S, Mukhi P, Kumari P, Mahato KR, Verma SK, Das D (2019) Catal Lett 149:3501

    Article  CAS  Google Scholar 

  8. Kausar N, Masum AA, Islam MM, Das AR (2017) Mol Divers 21:325

    Article  CAS  Google Scholar 

  9. Kemnitzer W, Drewe J, Jiang S, Zhang H, Grundy CC, Labreque D, Bubenick M, Attardo G, Denis R, Lamothe S, Gourdeau H, Tseng B, Kasibhatla B, Cai SX (2008) J Med Chem 51:417

    Article  CAS  Google Scholar 

  10. Shanthi G, Perumal PT (2007) Tetrahedron Lett 48:6785

    Article  CAS  Google Scholar 

  11. Chen W, Cai Y, Fu X, Liu X, Lin L, Feng X (2011) Org Lett 13:4910

    Article  CAS  Google Scholar 

  12. Singh N, Allam BK, Raghuvanshi DS, Singh KN (2013) Adv Synth Catal 355:1840

    Article  CAS  Google Scholar 

  13. Rai P, Srivastava M, Yadav S, Singh J, Singh J (2015) Catal Lett 145:2020

    Article  CAS  Google Scholar 

  14. Thakur A, Reddy PL, Tripathi M, Rawat DS (2015) New J Chem 39:6253

    Article  CAS  Google Scholar 

  15. Gao Y, Du D-M (2013) Tetrahedron Asymmetry 24:1312

    Article  CAS  Google Scholar 

  16. Rajesh UC, Wang J, Prescott S, Tsuzuki T, Rawat DS (2015) ACS Sustain Chem Eng 3:9

    Article  CAS  Google Scholar 

  17. Brahmachari G, Nurjamal K (2016) Curr Green Chem 3:248

    Article  CAS  Google Scholar 

  18. Rajesh UC, Kholiya R, Thakur A, Rawat DS (2015) Tetrahedron Lett 56:1790

    Article  CAS  Google Scholar 

  19. Khalafi-Nezhad A, Nourisefat M, Panahi F (2015) Org Biomol Chem 13:7772

    Article  CAS  Google Scholar 

  20. Bahuguna A, Choudhary P, Chhabra T, Krishnan V (2018) ACS Omega 3:12163

    Article  CAS  Google Scholar 

  21. Shanthi G, Perumal PT, Rao U, Sehgal PK (2009) Indian J Chem 48B:1319

    CAS  Google Scholar 

  22. Li C-B, Li Y-W, Xu D-Z (2018) Synthesis 50:3708

    Article  CAS  Google Scholar 

  23. Ganesan A, Kothandapani J, Subramaniapillai SG (2016) RSC Adv 6:20582

    Article  CAS  Google Scholar 

  24. Schreiner PR (2003) Chem Soc Rev 32:289

    Article  CAS  Google Scholar 

  25. Shaikh IR (2014) J Catal 2014:1

    Article  Google Scholar 

  26. Oliveira VG, Cardoso MFC, Forezi LSM (2018) Catalysts 8:605

    Article  Google Scholar 

  27. Das SK, Bhattacharjee P, Bora U (2018) ChemistrySelect 3:2131

    Article  CAS  Google Scholar 

  28. Shaabani A, Khodkari V, Nazeri MT, Ghasemi S, Mohammadian R, Shaabani S (2019) J Iran Chem Soc 16:1793

    Article  CAS  Google Scholar 

  29. Pariyar GC, Mitra B, Mukherjee S, Ghosh P (2020) ChemistrySelect 5:104

    Article  Google Scholar 

  30. Paul D, Borah A, Khatua S, Chatterjee PN (2019) Asian J Org Chem 8:1870

    Article  CAS  Google Scholar 

  31. Das D (2016) ChemistrySelect 1:1959

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.D. acknowledges the financial support (project ref. No YSS/2015/001425) from Science & Engineering Research Board (SERB), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debjit Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, D. Ascorbic acid: an efficient organocatalyst for environmentally benign synthesis of indole-substituted 4H‑chromenes. Monatsh Chem 152, 987–991 (2021). https://doi.org/10.1007/s00706-021-02824-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02824-5

Keywords

Navigation