Skip to main content
Log in

Solvent extraction and separation of samarium from transition and rare-earth metals using phosphonium ionic liquid Cyphos IL 104

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The objective of this work is to investigate the extraction behavior of samarium from chloride medium using trihexyl(tetradecyl)phosphonium bis-2,4,4-(trimethylpentyl)phosphinate (Cyphos IL 104), and separation efficiency of samarium in presence of other rare-earth and transition metals. It is then extended to Sm-Co separation from secondary magnetic waste. The extraction efficiency of Cyphos IL 104 is studied in detail by varying the key extraction parameters like shaking time, aqueous phase pH, ionic liquid, metal and chloride ion concentration, type of diluents, and temperature of aqueous phase. Quantitative extraction of 0.002 mol/dm3 Sm(III) has been found using 0.02 mol/dm3 Cyphos IL 104. Extraction equilibrium of samarium with Cyphos IL 104 is explained using the slope analysis method and FT-IR study. NaCl is used as a salting out agent that increases the samarium extraction. Toluene is found to be best diluents for dilution of Cyphos IL 104. The stripping efficiency is observed to be quantitative with 20% H2SO4 and 5% HNO3. The extraction process is endothermic in nature revealed from the temperature variation study. The investigation of samarium extraction in the presence of transition metals has been conducted and highest separation factors of 189.5 and 158.5 are obtained for Sm/Co and Sm/Ni, respectively, at initial pH 3.0.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Inamoto A, Ogasawara K, Omata K, Kabuto K, Sasaki Y (2000) Org Lett 23:3543

    Article  CAS  Google Scholar 

  2. Charalampides G, Vatalis KI, Apostoplos B, Nikolas BP (2015) Procedia Econ Finance 24:126

    Article  Google Scholar 

  3. Preinfalk C, Morteani G (1989) Part of the Special Publication No. 7 of the Society for Geology Applied to Mineral Deposits book series (MINERAL DEPOS.), Lanthanides, Tantalum and Niobium 7: 359

  4. Rajasekhar A, Abraham A, Pant M (2014) Int J Mach Learn Cybern 5:327

    Article  CAS  Google Scholar 

  5. Truong DQ, Thanh TQ, Ahn KK (2012) Int J Precis Eng Manuf 13:1403

    Article  Google Scholar 

  6. Yi JH, Peng YD (2004) Rare Metal Mater Eng 33:337

    CAS  Google Scholar 

  7. Talijan NM (2006) Sci Sinter 38:73

    Article  CAS  Google Scholar 

  8. Feng DY, Zaho LZ, Liu ZW (2016) Physica B Condens Matter 487:25

    Article  CAS  Google Scholar 

  9. Scargill D, Alcock K, Fletcher JM, Hesford E, McKay HAC (1957) J Inorg Nucl Chem 4:304

    Article  CAS  Google Scholar 

  10. Pierce TB, Peck PF (1963) Analyst 88:217

    Article  CAS  Google Scholar 

  11. Tsay LM, Shih JS, Wu SC (1983) Analyst 108:1108

    Article  CAS  Google Scholar 

  12. Hasegawa Y, Tamaki S, Yajima H, Hashimoto B, Vaita T (2011) Talanta 85:1543

    Article  CAS  PubMed  Google Scholar 

  13. El-Hefny NE, El-Nadi YA, Daoud JA (2010) Sep Purif Technol 75:310

    Article  CAS  Google Scholar 

  14. Torkaman R, Moosavian MA, Torab-mostaedi M, Safdari J (2013) Hydrometallurgy 137:101

    Article  CAS  Google Scholar 

  15. El-Nadi YA, El-Hefny NE, Daoud JA (2007) Solvent Extr Ion Exch 25:225

    Article  CAS  Google Scholar 

  16. Miranda P Jr, Zinner LB (1997) J Alloys Compd 249:116

    Article  CAS  Google Scholar 

  17. Benedetto JS, Ciminelli VST, Neto JD (1993) Mineral Eng 6:597

    Article  CAS  Google Scholar 

  18. Lee MS, Lee GS, Lee JY, Kim SD, Kim JS (2005) Mater Trans 46:64

    Article  CAS  Google Scholar 

  19. El- Nadi YA (2010) J Rare Earths 28:215

    Article  CAS  Google Scholar 

  20. Fraser KJ, MacFarlane DR (2009) Aust J Chem 62:309

    Article  CAS  Google Scholar 

  21. Makanyire T, Sanchez-Segado S, Jha A (2016) Adv Manuf 4:33

    Article  CAS  Google Scholar 

  22. Regel-Rosocka M (2009) Sep Purif Technol 66:19

    Article  CAS  Google Scholar 

  23. Rout A, Binnemans K (2014) Dalton Trans 43:1862

    Article  CAS  PubMed  Google Scholar 

  24. Voorde MVD, Hecke KV, Binnemans K, Cardinaels T (2018) RSC Adv 8:20077

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hoogerstraete TV, Binnemans K (2014) Green Chem 16:1594

    Article  Google Scholar 

  26. Kumari A, Sinha MK, Sahu SK, Pandey BD (2016) Solv Extr Ion Exch 34:469

    Article  CAS  Google Scholar 

  27. Mishra BB, Devi N (2018) J Mol Liq 271:389

    Article  CAS  Google Scholar 

  28. Regel-Rosocka M, Nowak L, Wisniewski M (2012) Sep Purif Technol 97:158

    Article  CAS  Google Scholar 

  29. Castillo J, Coll MT, Fortuny A, Donoso PN, Sepulveda R, Sastre AM (2014) Hydrometallurgy 141:89

    Article  CAS  Google Scholar 

  30. Cieszynska A, Wisniewski M (2012) Hydrometallurgy 113:79

    Article  CAS  Google Scholar 

  31. Mahandra H, Singh R, Gupta B (2017) J Clean Prod 172:133

    Article  CAS  Google Scholar 

  32. Mahandra H, Singh R, Gupta B (2017) Sep Purif Technol 177:281

    Article  CAS  Google Scholar 

  33. Mahandra H, Singh R, Gupta B (2018) J Ind Eng Chem 65:213

    Article  CAS  Google Scholar 

  34. Nayak S, Devi N (2017) Hydrometallurgy 171:191

    Article  CAS  Google Scholar 

  35. Kumari A, Sinha MK, Sahu SK, Pandey BD (2015) Hydrometallurgy 165:159

    Article  CAS  Google Scholar 

  36. Ghatee MH, Zare M, Moosavi F, Zolghadr AR (2010) J Chem Eng Data 55:3084

    Article  CAS  Google Scholar 

  37. Hoogerstraete TV, Onghena B, Binnemans K (2013) J Phys Chem Lett 4:1659

    Article  CAS  PubMed  Google Scholar 

  38. Swain SS, Nayak B, Devi N, Das S, Swain N (2016) Hydrometallurgy 162:63

    Article  CAS  Google Scholar 

  39. Hoogerstraete TV, Wellens S, Verachtert K, Binnemans K (2013) Green Chem 15:919

    Article  CAS  Google Scholar 

  40. Gupta CK, Krishnamurthy N (1992) Int Mat Rev 37:197

    Article  CAS  Google Scholar 

  41. Sahoo K, Nayak AK, Ghosh MK, Sarangi K (2018) J Rare Earths 36:725

    Article  CAS  Google Scholar 

  42. Savvin SB (1961) Talanta 8:673

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our thanks to Cytec Inc. for providing the gift sample of Cyphos IL 104 and to the authorities of S‘O’A [deemed to be university] for encouraging and providing the facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niharbala Devi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, B.B., Devi, N. & Sarangi, K. Solvent extraction and separation of samarium from transition and rare-earth metals using phosphonium ionic liquid Cyphos IL 104. Monatsh Chem 152, 767–775 (2021). https://doi.org/10.1007/s00706-021-02792-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02792-w

Keywords

Navigation