Skip to main content
Log in

Study on the Extraction and Separation of Samarium from Chloride Medium Using D2EHPA and [P66614][D2EHP] and Their Application to Monazite Ore

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present work deals with the investigation of solvent extraction of Sm(III) from chloride medium using di-(2-ethylhexyl)phosphoric acid (D2EHPA) and trihexyl tetradecyl phosphonium bis(2-ethylhexyl)phosphate ([P66614][D2EHP]) as extractants. In the extraction stage, the effect of contact time, aqueous phase pH, extractant concentration, NaCl concentration, temperature effect, stripping and O:A ratio variation are investigated to compare the extraction abilities of D2EHPA and the ionic liquid made from that. The complex formation ability and extraction mechanism of samarium with two extractants are explained by FTIR spectra and slope analysis method. Solvent extraction of samarium is better noticeable with D2EHPA than that of [P66614][D2EHP]. It is evident that with rise in pH of the aqueous medium, the extraction percentage of samarium is increased for both the extractants. Optimum extraction (100%) of Sm3+ is obtained with 0.1 mol/L D2EHPA and 0.1 mol/L [P66614][D2EHP], respectively. HNO3 is the best stripping agent for back-extraction of samarium from the loaded extractants. Separation studies are carried out in the presence of transition metal ions (mostly present in magnets) to know the efficiency of D2EHPA and ionic liquid [P66614][D2EHP]. The extraction studies with mixture of other rare earth metal ions similar to monazite composition follow the order as Gd(III) > Sm(III) > Nd(III) > Ce(III) > La(III) for both the extractants. Using 0.03 mol/L D2EHPA, complete separation of Gd and Sm from the rare earth mixtures is found at two stages with O:A ratio of unity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Maestro P, and Huguenin D, J Alloys Compd 225 (1995) 520.

    CAS  Google Scholar 

  2. Will J, Mitterdorfer A, Kleinlogel C, Perednis D, and Gauckler L J, Solid State Ion 131 (2000) 79.

    CAS  Google Scholar 

  3. Xie F, Zhang T A, Dreisinger D, and Doyle F, Miner Eng 56 (2014) 10.

    CAS  Google Scholar 

  4. Binnemans K, Jones P T, Blanpain B, Gerven T V, Yang Y X, Walton A, and Buchert M, J Clean Prod 51 (2013) 1.

    CAS  Google Scholar 

  5. El-Hefny N E, El-Nadi YA, and Daoud JA, Sep Purif Technol 75 (2010) 310.

    CAS  Google Scholar 

  6. Yi J H, Rare Met 33 (2014) 633.

    CAS  Google Scholar 

  7. Uhrovčík J, and Lesný J, Acta Tech Jaur 7 (2014) 62.

    Google Scholar 

  8. TuranovA N, Karandashev V K, and Yarkevich A N, Solv Extr Ion Exch 20 (2007) 1.

    Google Scholar 

  9. Ouazene M, Kaid M, Ilikti H, and Villemin D, Phys Chem Liq 54 (2016) 552.

    CAS  Google Scholar 

  10. Sato T, Hydrometallurgy 22 (1989) 121.

    CAS  Google Scholar 

  11. Rabie K A, Hydrometallurgy 85 (2007) 81.

    CAS  Google Scholar 

  12. Torkaman R, Safdari J, Torab-Mostaedi M, Moosavian M A, and Asadollahzadeh M, J Taiwan Inst Chem 48 (2015) 18.

    CAS  Google Scholar 

  13. Mandhare A M, Han S H, Anuse M A, and Kolekar S S, Arab J Chem 8 (2015) 456.

    CAS  Google Scholar 

  14. Belova V V, Voshkin A A, Kholkin A I, and Payrtman A K, Hydrometallurgy 97 (2009) 198.

    CAS  Google Scholar 

  15. Azizi D, and Larachi F, J Mol Liq 263 (2018) 96.

    CAS  Google Scholar 

  16. Rout A, Kotlarska J, Dehaen W, and Binnemans K, Phys Chem Chem Phys 15 (2013) 16533.

    CAS  Google Scholar 

  17. Yang H, Wang W,Cui H, Zhang D, Liu Y, and Chen J, J Chem Technol Biotechnol 87 (2012) 198.

    CAS  Google Scholar 

  18. Shen L, Chen J, Chen L, Liu C, Zhang D, Zhang Y, Su W, and Deng Y, Hydrometallurgy 161 (2016) 152.

    CAS  Google Scholar 

  19. Voorde M V D, Hecke KV, Binnemans K, and Cardinaels T, RSC Adv 8 (2018) 2007.

    Google Scholar 

  20. Hoogerstraete T V, and Binnemans K, Green Chem 16 (2014) 1594.

    Google Scholar 

  21. Quinn JE, Soldenhoff K H, and Stevens G W, Hydrometallurgy 169 (2017) 621.

    CAS  Google Scholar 

  22. Chen Y, Wang H, Pei Y, Ren J, Wang J, ACS Sustain Chem Eng 3 (2015) 3167.

    CAS  Google Scholar 

  23. Wang Y, Wang Y, Jing Y, Chen J, and Liu Y, J Rare Earth 34 (2016) 1260.

    CAS  Google Scholar 

  24. Guo L, Chen J, Shen L, Zhang J, Zhang D, and Deng Y, ACS Sustain Chem Eng 2 (2014) 1968.

    CAS  Google Scholar 

  25. Markiewicz B, Sznajdrowska A, Chrzanowski L, Lawniczak L, ZgolaGrzeskowiak A, Kubiak K, Nawrot J, and Pernak J, New J Chem 38 (2014) 3146.

    CAS  Google Scholar 

  26. Castillo J, Coll M T, Fortuny A, Donoso P N, Sepúlveda R, and Sastre A M, Hydrometallurgy 141 (2014) 89.

    CAS  Google Scholar 

  27. Mishra B B, and Devi N, J Mol Liq 271 (2018) 389.

    CAS  Google Scholar 

  28. Kumari A, Sinha MK, Sahu S K, and Pandey B D, Solv Extr Ion Exch 34 (2016) 469.

    CAS  Google Scholar 

  29. Peppard D F, Mason GW, Driscoll W J, and Sironen R J, J Inorg Nucl Chem 7 (1958) 276.

    CAS  Google Scholar 

  30. Cholico-Gonzalez D, Avila-Rodriguez M, Cote G, and Chagnes A, J Mol Liq 187 (2013) 165.

    CAS  Google Scholar 

  31. Swain S S, Nayak B, Devi N, Das S, and Swain N, Hydrometallurgy 162 (2016) 63.

    CAS  Google Scholar 

  32. Sarma P V R B, and Reddy B R, Miner Eng 15 (2002) 461.

    Google Scholar 

  33. Onoda H, and Kurioka Y, J Environ Chem Eng 4 (2016) 4536.

    CAS  Google Scholar 

  34. Rabah M A, Waste Manag 28 (2008) 318.

    CAS  Google Scholar 

  35. Rout A, and Binnemans K, Phys Chem Chem Phys 18 (2016) 16039.

    CAS  Google Scholar 

  36. Lin E Y, Rahmawati A, Ko J H, and Liu J C, Sep Purif Technol 192 (2018) 166.

    CAS  Google Scholar 

  37. Innocenzi V, Michelis I D, Ferella F, and Vegliò F, Int J Miner Process 168 (2017) 76.

    CAS  Google Scholar 

  38. Meshram P, Pandey B D, and Mankhand T R, Waste Manag 51 (2016) 196.

    CAS  Google Scholar 

  39. Parhi P K, Park K H, Nam C W, and Park J T, J Rare Earths 33 (2015) 207.

    CAS  Google Scholar 

  40. El-Nadi Y A, Hydrometallurgy 119–120 (2012) 23.

    Google Scholar 

  41. Kim J S, Kumar B N, Lee J Y, Kantam, M L, and Reddy B R, Sep Sci Technol 47 (2012) 1644.

    Google Scholar 

  42. Banda R, Jeon H S, and Lee M S, Metall Mater Trans B 45 (2014) 2009.

    CAS  Google Scholar 

  43. Gupta C K, and Krishnamurthy N, Int Mater Rev 37 (1992) 197.

    CAS  Google Scholar 

  44. Fontana D, and Pietrelli L, J Rare Earths 27 (2009) 830.

    Google Scholar 

  45. Spedding F H, and Daane AH (eds) The Rare Earths, Wiley, New York (1961).

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Manoj Ranjan Nayak, President of Siksha ‘O’ Anusandhan [Deemed to be University], for his constant encouragement to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niharbala Devi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, B.B., Devi, N. Study on the Extraction and Separation of Samarium from Chloride Medium Using D2EHPA and [P66614][D2EHP] and Their Application to Monazite Ore. Trans Indian Inst Met 73, 2247–2257 (2020). https://doi.org/10.1007/s12666-020-02033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02033-4

Keywords

Navigation