Skip to main content
Log in

Chemo-enzymatic synthesis of 13C- and 19F-labeled uridine-5′-triphosphate for RNA NMR probing

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Solution NMR of the magnetically active fluorine-19 (19F) isotope offers tremendous advantages in the study of RNA structure and conformational changes. However, exploiting these advantages requires the synthesis of fluorinated RNA-building blocks, and this comes with certain challenges in overall yield of nucleotides, purity, and cost. Here, we detail a scalable and reliable method to produce [1′,5-13C2, 5-19F, 6-2H]- and [1′,5-13C2, 5-19F, 6-2H, 1,3-15N2]-5-fluorouracil-5′-triphosphate. We further present the steps employed to characterize the labeled nucleotide before its incorporation into RNAs with relevant biological activities.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ohno H, Akamine S, Saito H (2019) Curr Opin Biotechnol 58:53

    Article  CAS  PubMed  Google Scholar 

  2. Kharel P, Balaratnam S, Beals N, Basu S (2020) Wiley Interdiscip. Rev RNA 111(1):e1568

    Google Scholar 

  3. Dasgupta S (2020) Org Biomol Chem 18:7724

    Article  CAS  PubMed  Google Scholar 

  4. Ohyama T, Takahashi H, Sharma H, Yamazaki T, Gustincich S, Ishii Y, Carninci P (2020) Nucleic Acids Res 48:9346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shi H, Rangadurai A, Abou Assi H, Roy R, Case DA, Herschlag D, Yesselman JD, Al-Hashimi HM (2020) Nat Commun 1:1

    Google Scholar 

  6. Becette OB, Zong G, Chen B, Taiwo KM, Case DA, Dayie TK (2020) Sci Adv 6:6572

    Article  Google Scholar 

  7. Brutscher B, Boisbouvier J, Pardi A, Marion D, Simorre JP (1998) J Am Chem Soc 120:11845

    Article  CAS  Google Scholar 

  8. Pervushin K, Riek R, Wider G, Wu K (1998) J Am Chem Soc 120:6394

    Article  CAS  Google Scholar 

  9. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Proc Natl Acad Sci USA 94:12366

    Article  CAS  PubMed  Google Scholar 

  10. Schnieders R, Richter C, Warhaut S, de Jesus V, Keyhani S, Duchardt-Ferner E, Keller H, Wöhnert J, Kuhn LT, Breeze AL, Bermel W (2017) J Biomol NMR 69:31

    Article  CAS  PubMed  Google Scholar 

  11. Hennig M, Scott LG, Sperling E, Bermel W, Williamson JR (2007) J Am Chem Soc 129:14911

    Article  CAS  PubMed  Google Scholar 

  12. Rastinejad F, Evilia C, Lu P (1995) Methods Enzymol 261:560

    Article  CAS  PubMed  Google Scholar 

  13. Scott LG, Hennig M (2016) Methods Enzymol 566:59

    Article  CAS  PubMed  Google Scholar 

  14. Huang W, Varani G, Drobny GP (2010) J Am Chem Soc 132:17643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kreutz C, Kählig H, Konrat R, Micura R (2006) Angew Chemie Int Ed 45:3450

    Article  CAS  Google Scholar 

  16. Linclau B, Ardá A, Reichardt NC, Sollogoub M, Unione L, Vincent SP, Jiménez-Barbero J (2020) Chem Soc Rev 49:3863

    Article  CAS  PubMed  Google Scholar 

  17. Guo F, Li Q, Zhou C (2017) Org Biomol Chem 15:9552

    Article  CAS  PubMed  Google Scholar 

  18. Boeszoermenyi A, Chhabra S, Dubey A, Radeva DL, Burdzhiev NT, Chanev CD, Petrov OI, Gelev VM, Zhang M, Anklin C, Kovacs H (2019) Nat Methods 16:333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boeszoermenyi A, Ogórek B, Jain A, Arthanari H, Wagner G (2020) J Biomol NMR 74:365

    Article  CAS  PubMed  Google Scholar 

  20. Namavari M, Barrio JR, Toyokuni T, Gambhir SS, Cherry SR, Herschman HR, Phelps ME, Satyamurthy N (2000) Nucl Med Biol 27:157

    Article  CAS  PubMed  Google Scholar 

  21. Irie T, Fukushi K, Inoue O, Yamasaki T, Ido T, Nozaki T (1982) Int J Appl Radiat Isot 33:633

    Article  CAS  PubMed  Google Scholar 

  22. Horti AG, Ravert HT, Mathews WB, Abraham EH, Wahl RL, Dannals R (2006) J Label Compd Radiopharm 49:811

    Article  CAS  Google Scholar 

  23. Haley B, Yount RG (1972) Biochemistry 11:2863

    Article  CAS  PubMed  Google Scholar 

  24. Baranowski MR, Nowicka A, Rydzik AM, Warminski M, Kasprzyk R, Wojtczak BA, Wojcik J, Claridge TD, Kowalska J, Jemielity J (2015) J Org Chem 80:3982

    Article  CAS  PubMed  Google Scholar 

  25. Satishchandran C, Myers CB, Markham GD (1992) Bioorg Chem 20:107

    Article  CAS  Google Scholar 

  26. Matulic-Adamic J, Rosenberg I, Arzumanov AA, Dyatkina NB, Shirokova EA, Krayevsky AA, Watanabe KA (1993) Nucleosides Nucleotides 12:1085

    Article  CAS  Google Scholar 

  27. Wunderlich CH, Spitzer R, Santner T, Fauster K, Tollinger M, Kreutz C (2012) J Am Chem Soc 134:7558

    Article  CAS  PubMed  Google Scholar 

  28. SantaLucia J Jr, Shen LX, Cai Z, Lewis H, Tinoco I Jr (1995) Nucleic Acids Res 23:4913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rangwala HS, Giraldes JW, Gurvich VJ (2011) J Label Compd Radiopharm 54:340

    Article  CAS  Google Scholar 

  30. Lai GS, Pastore W, Pesaresi R (1995) J Org Chem 60:7340

    Article  Google Scholar 

  31. Hennig M, Munzarová ML, Bermel W, Scott LG, Sklenář V, Williamson JR (2006) J Am Chem Soc 128:5851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Longhini AP, LeBlanc RM, Becette O, Salguero C, Wunderlich CH, Johnson BA, D’Souza VM, Kreutz C, Dayie TK (2016) Nucleic Acids Res 44:e52

    Article  PubMed  Google Scholar 

  33. Arthur PK, Alvarado LJ, Dayie TK (2011) Protein Expr Purif 76:229

    Article  CAS  PubMed  Google Scholar 

  34. Agranoff BW, Brady RO (1956) J Biol Chem 219:221

    Article  CAS  PubMed  Google Scholar 

  35. Sigrell JA, Cameron AD, Jones TA, Mowbray SL (1998) Structure 6:183

    Article  CAS  PubMed  Google Scholar 

  36. Miller GA, Rosenzweig S, Switzer RL (1975) Arch Biochem Biophys 171:732

    Article  CAS  PubMed  Google Scholar 

  37. Zhou W, Tsai A, Dattmore DA, Stives DP, Chitrakar I, Dalessandro AM, Patil S, Hicks KA, French JB (2019) BMC Struct Biol 1:1

    Article  CAS  Google Scholar 

  38. Schumacher MA, Carter D, Scott DM, Roos DS, Ullman B, Brennan RG (1998) EMBO J 17:3219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Crawford I, Kornberg A, Simms ES (1957) J Biol Chem 2:1093

    Article  Google Scholar 

  40. Labesse G, Benkali K, Salard-Arnaud I, Gilles AM, Munier-Lehmann H (2011) Nucleic Acids Res 39:3458

    Article  CAS  PubMed  Google Scholar 

  41. Marco-Marín C, Gil-Ortiz F, Rubio V (2005) J Mol Biol 352:438

    Article  PubMed  Google Scholar 

  42. Fritz-Wolf K, Schnyder T, Wallimann T, Kabsch W (1996) Nature 6580:341

    Article  Google Scholar 

  43. McLeish MJ, Kenyon GL (2005) Crit Rev Biochem Mol Biol 40:1

    Article  CAS  PubMed  Google Scholar 

  44. Alvarado LJ, Longhini AP, LeBlanc RM, Chen B, Kreutz C, Dayie TK (2014) Methods Enzymol 549:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alvarado LJ, LeBlanc RM, Longhini AP, Keane SC, Jain N, Yildiz ZF, Tolbert BS, D’Souza VM, Summers MF, Kreutz C, Dayie TK (2014) ChemBioChem 15:1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nußbaumer F, Plangger R, Roeck M, Kreutz C (2020) Angew Chem Int Ed 59:17062

    Article  Google Scholar 

  47. Aeschbacher T, Schubert M, Allain FHT (2012) J Biomol NMR 52:179

    Article  CAS  PubMed  Google Scholar 

  48. Rosenau CP, Jelier BJ, Gossert AD, Togni A (2018) Angew Chem Int Ed 57:9528

    Article  CAS  Google Scholar 

  49. Weigelt J (1998) J Am Chem Soc 120:10778

    Article  CAS  Google Scholar 

  50. Pervushin K, Wider G, Wüthrich K (1998) J Biomol NMR 12:345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Professors Philip Deshong, and Lai-Xi Wang (University of Maryland) for use of laboratory space, and Prof Jeff Davis for many useful discussions and comments. We also thank Maryia Svirydava for her help in analyzing samples by mass spectrometry.

Funding

The funding was received by National Institute of General Medical Sciences (Grant no. U54AI50470).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore Kwaku Dayie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 890 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taiwo, K.M., Becette, O.B., Zong, G. et al. Chemo-enzymatic synthesis of 13C- and 19F-labeled uridine-5′-triphosphate for RNA NMR probing. Monatsh Chem 152, 441–447 (2021). https://doi.org/10.1007/s00706-021-02757-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02757-z

Keywords

Navigation