Skip to main content
Log in

The reactivity of tetrahydropyrrolo[1,2-b]isothiazol-3(2H)-one 1,1-dioxides

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The present work is devoted to the study of the reactivity of tetrahydropyrrolo[1,2-b]isothiazol-3(2H)-one 1,1-dioxide framework. This scaffold possesses two reaction centers: the EWG-activated methylene group and the carbonyl functionality, which are the basic variation points. At the same time, the attached 3a-substituent had a significant impact on the course of the explored reactions and its role was also investigated. In this regard, the corresponding 3a-unsubstituted and 3a-methylated tetrahydropyrrolo[1,2-b]isothiazol-3(2H)-one 1,1-dioxides were chosen as model substances involved in chemical properties evaluation. With a view to pre-assess the activity of the model compounds, a deuteration study was conducted. Furthermore, the interaction with a variety of electrophilic and nucleophilic agents was explored. The most striking difference in the chemical behavior was observed in the reaction with the Wittig reagent triphenylcarbethoxymethylenephosphorane (Ph3P=CHCO2Me). In particular, unlike the 3a-unsubstituted substrate, the 3a-methylated one gave the unusual phosphonium betaine, namely 3a-methyl-2-[2-(triphenylphosphonio)acetyl]-3a,4,5,6-tetrahydropyrrolo[1,2-b]isothiazol-3-olate 1,1-dioxide. The proposed mechanistic insights of this reaction have been discovered.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brameld KA, Kuhn B, Reuter DC, Stahl M (2008) J Chem Inf Model 48:1

    CAS  PubMed  Google Scholar 

  2. Yoshino H, Ueda N, Niijima J, Sugumi H, Kotake Y, Koyanagi N, Yoshimatsu K, Asada M, Watanabe T, Nagasu T, Tsukahara K, Iijima A, Kitoh K (1992) J Med Chem 35:2496

    CAS  PubMed  Google Scholar 

  3. Apaydın S, Török M (2019) Bioorg Med Chem Lett 29:2042

    PubMed  Google Scholar 

  4. Shah SS, Rivera G, Ashfaq M (2013) Mini Rev Med Chem 13:70

    CAS  PubMed  Google Scholar 

  5. Grygorenko OO, Volochnyuk DM, Ryabukhin SV, Judd DB (2020) Chem Eur J 26:1196

    CAS  PubMed  Google Scholar 

  6. Grygorenko OO, Biitseva AV, Zhersh S (2018) Tetrahedron 74:1355

    CAS  Google Scholar 

  7. Koeplinger KA, Zhao Z, Peterson T, Leone JW, Schwende FS, Heinrikson RL, Tomasselli AG (1999) Drug Metab Dispos 27:986

    CAS  PubMed  Google Scholar 

  8. (2007) Prontosil. In: Lesch JE (eds) The First miracle drugs: how the sulfa drugs transformed medicine. Oxford University Press, New York, p 51

  9. Raju TNK (1999) Lancet 353:681

    CAS  PubMed  Google Scholar 

  10. Cooper GF (1991) Synthesis 1991:859

    Google Scholar 

  11. Lad N, Sharma R, Marquez VE, Mascarenhas M (2013) Tetrahedron Lett 54:6307

    CAS  Google Scholar 

  12. Popova MV, Dobrydnev AV (2017) Chem Heterocycl Compd 53:492

    CAS  Google Scholar 

  13. Majumdar KC, Mondal S (2011) Chem Rev 111:7749

    CAS  PubMed  Google Scholar 

  14. Debnath S, Mondal S (2018) Eur J Org Chem 2018:933

    CAS  Google Scholar 

  15. Rassadin VA, Grosheva DS, Tomashevskii AA, Sokolov VV (2013) Chem Heterocycl Comp 49:39

    CAS  Google Scholar 

  16. Mondal S, Debnath S (2014) Synthesis 46:368

    Google Scholar 

  17. Rabasseda X, Hopkins SJ (1994) Drugs Today 30:557

    CAS  Google Scholar 

  18. Lombardino JG, Wiseman EH, McLamore WM (1971) J Med Chem 14:1171

    CAS  PubMed  Google Scholar 

  19. Tanimukai H, Inui M, Harigushi S, Kaneko J (1965) Biochem Pharmacol 14:961

    CAS  PubMed  Google Scholar 

  20. Kasper S, McEwen BS (2008) CNS Drugs 22:15

    CAS  PubMed  Google Scholar 

  21. Stachel H-D, Drasch G, Kunze J, Peh J (1976) β-Ketopropansultones and -sultams. DE Patent 2,431,734, Jan 29, 1976; (1976) Chem Abstr 84:135626

  22. Stachel H-D, Drasch G (1985) Arch Pharm 318:304

    CAS  Google Scholar 

  23. Stachel H-D, Poschenrieder H, Lomitzky V (1992) Arch Pharm 325:461

    CAS  Google Scholar 

  24. Schobert R, Schlenk A (2008) Bioorg Med Chem 16:4203

    CAS  PubMed  Google Scholar 

  25. Tuske S, Sarafianos SG, Wang X, Hudson BB, Sineva E, Mukhopadhyay J, Birktoft JJ, Leroy O, Ismail S, Clark AD Jr, Dharia C, Napoli A, Laptenko O, Lee J, Borukhov S, Ebright RH, Arnold E (2005) Cell 122:541

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Aoki S, Higuchi K, Ye Y, Satari R, Kobayashi M (2000) Tetrahedron 56:1833

    CAS  Google Scholar 

  27. Phillips NJ, Goodwin JT, Fraiman A, Cole RJ, Lynn DG (1989) J Am Chem Soc 111:8223

    CAS  Google Scholar 

  28. Marfori EC, Kajiyama S, Fukusaki E-I, Kobayashi A (2002) Z Naturforsch C 57:465

    CAS  PubMed  Google Scholar 

  29. Höltzel A, Gänzle MG, Nicholson GJ, Hammes WP, Jung G (2000) Angew Chem 112:2886 ((2000) Angew Chem Int Ed 39:2766)

    Google Scholar 

  30. Marquardt U, Schmid D, Jung G (2000) Synlett 8:1131

    Google Scholar 

  31. Athanasellis G, Igglessi-Markopoulou O, Markopoulos J (2010) Bioinorg Chem Appl 2010:315056

    PubMed Central  Google Scholar 

  32. Brück E, Elbert A, Fischer R, Krueger S, Kühnhold J, Klueken AM, Nauen R, Niebes J-F, Reckmann U, Schnorbach H-J, Steffens R, van Waetermeulen X (2009) Crop Prot 28:838

    Google Scholar 

  33. Van Nhien AN, Tomassi C, Len C, Marco-Contelles JL, Balzarini J, Pannecouque C, De Clercq E, Postel D (2005) J Med Chem 48:4276

    Google Scholar 

  34. Baumann K (2007) Pharmaceutically active tetrahydropyrrolo[1,2-b]isothiazole 1,1-dioxides. WO Patent 2007,039,616, Apr 12, 2007; (2007) Chem Abstr 146:421974

  35. Marco JL, Ingate ST, Chinchón PM (1999) Tetrahedron 55:7625

    CAS  Google Scholar 

  36. Postel D, Nguyen A, Nhien V, Marco JL (2003) Eur J Org Chem 2003:3713

    Google Scholar 

  37. Marco JL, Ingate ST, Jaime C, Beá I (2000) Tetrahedron 56:2523

    CAS  Google Scholar 

  38. Dobrydnev AV, Popova MV, Saffon-Merceron N, Listunov D, Volovenko YM (2015) Synthesis 47:2523

    CAS  Google Scholar 

  39. Popova MV, Dobrydnev AV, Dyakonenko VV, Konovalova IS, Shishkina SV, Volovenko YM (2019) Tetrahedron 75:1231

    CAS  Google Scholar 

  40. Omelian TV, Dobrydnev AV, Ostapchuk EN, Volovenko YM (2019) Chem Select 4:4933

    CAS  Google Scholar 

  41. Popova MV, Dobrydnev AV, Dyachenko, Duhayon C, Listunov D, Volovenko YM (2017) Monatsh Chem 148:939

    CAS  Google Scholar 

  42. Dobrydnev AV, Vashchenko BV, Konovalova IS, Bisikalo KO, Volovenko YM (2018) Monatsh Chem 149:1827

    CAS  Google Scholar 

  43. Dyachenko, Dobrydnev AV, Volovenko YM (2018) Mol Div 22:919

    CAS  Google Scholar 

  44. Hur MY (2015) Synthesis of novel sultam scaffolds: method and library development. Ph.D. thesis, University of Kansas, USA

  45. Thomsen MW, Handwerker BM, Katz SA, Fisher SA (1988) Synth Commun 18:1433

    CAS  Google Scholar 

  46. Singh BK, Bisht SS, Tripathi RP (2006) Beilstein J Org Chem 2006(2):24

    Google Scholar 

  47. Aliev ZG, Maslivets AN, Simonchik OL, Konyukhova TG, Andreichikov YS, Atovmyan LO (1995) Russ Chem Bull 44:1496

    Google Scholar 

  48. Tomilov YV, Platonov DN, Dorokhov DV, Nefedov OM (2007) Tetrahedron Lett 48:883

    CAS  Google Scholar 

  49. Schobert R (2005) Org Synth 82:140

    CAS  Google Scholar 

  50. Bartlett M (2013) Synlett 24:773

    Google Scholar 

  51. Schlenk A, Diestel R, Sasse F, Schobert R (2010) Chem Eur J 16:2599

    CAS  PubMed  Google Scholar 

  52. Schobert R, Siegfried S, Nieuwenhuyzen M, Milius W, Hampel F (2000) J Chem Soc Perkin Trans 1(11):1723

    Google Scholar 

  53. Abu-Shanab FA, Sherif MS, Mousaa S (2009) J Heterocycl Chem 46:801

    CAS  Google Scholar 

  54. Brahma S, Ray JK (2008) Tetrahedron 64:2883

    CAS  Google Scholar 

  55. Stanovnik B, Svete J (2004) Chem Rev 104:2433

    CAS  PubMed  Google Scholar 

  56. Tkachuk TM, Shyshkina OO, Volovnenko TA, Volovenko YM, Zubatyuk RI, Medviediev VV, Shishkin OV (2013) Monatsh Chem 144:263

    CAS  Google Scholar 

  57. Perrin DD, Armarego IF, Perrin DR (1980) Purification of laboratory chemicals, 2nd edn. Pergamon Press, New York

    Google Scholar 

  58. Sheldrick G (2008) Acta Crystallogr Sect A 64:112

    CAS  Google Scholar 

Download references

Acknowledgements

The work was funded by Enamine Ltd. A.V.D. was also funded by the Ministry of Education and Science of Ukraine (Grant No. 19БФ037-03). We thank Iryna Omelian for assistance with methodology, Svitlana Omelian for a fellowship and comments that greatly improved the manuscript, and Vitaliy Polovinko for providing the NMR experiments. The authors also show their gratitude to Prof. Andrey A. Tolmachev for his encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Dobrydnev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 10384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omelian, T.V., Dobrydnev, A.V., Utchenko, O.Y. et al. The reactivity of tetrahydropyrrolo[1,2-b]isothiazol-3(2H)-one 1,1-dioxides. Monatsh Chem 151, 1759–1772 (2020). https://doi.org/10.1007/s00706-020-02694-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02694-3

Keywords

Navigation