Skip to main content
Log in

Relative kinetic stability towards redox decomposition of cerium(IV) complexes with some organic compounds

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A comparative analysis is performed on the stability constants \({\upbeta }_{1yn}\) and intramolecular redox decomposition rate constants \(k_{n\; = \;1}\) obtained for intermediate cerium(IV) complexes \([{\text{CeH}}_{y} {\text{L}}_{n} ]^{4\; + \;y\; - \;nk}\) with three series of heterocyclic and aliphatic organic compounds \(R = H_{k} L\) formed during the oxidation reactions of these compounds with cerium(IV). Linear relationships are established for these complexes between \(\log k_{n\; = \;1}\) and \(\log {\upbeta }_{1yn}\). A quantitative method is proposed to examine the kinetic stabilization of unstable metal oxidation states upon complexation as well as the reactivity of these complexes on the basis of the obtained equations for these relationships.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In contrast to the pseudo-first-order rate constants that are functions of variable parameters of an experimental series, we define these constants as the rate constants of the first concentration order (\(n_{{\text{c}}} = 1)\) with respect to the complex that preserve the value constancy within the experimental series (see, e.g., [4]). They are abbreviated below as \(k_{{{{n}} = 1}}\).

  2. A reaction series consists of similar reactions proceeding through a common mechanism and obeying a common correlation.

References

  1. Izyumov A, Plaksin E (eds) (2013) Cerium: molecular structure technological applications and health effects. Nova Science Publishers Inc, New York

    Google Scholar 

  2. Szymański JK, Temprano-Coleto F, Pérez-Mercader J (2015) Phys Chem Chem Phys 17:6713

    Article  Google Scholar 

  3. Naik DV, Byadagi KS, Nandibewoor ST, Chimatadar SA (2013) Monatsh Chem 144:1307

    Article  CAS  Google Scholar 

  4. Voskresenskaya OO, Skorik NA, Yuzhakova YV (2017) Russ J Phys Chem A 91:627

    Article  CAS  Google Scholar 

  5. Sroor FMA, Edelmann FT (2012) Tetravalent chemistry: organometallic. In: Atwood R (ed) The rare earth elements: fundamentals and applications. Wiley, Chichester, p 321

    Google Scholar 

  6. Solola LA, Zabula AV, Dorfner WL, Manor BC, Carroll PJ, Schelter EJ (2016) J Am Chem Soc 138:6928

    Article  CAS  Google Scholar 

  7. Tandom PK, Khanam SC, Singh SB (2012) Open Catal 5:1

    Article  Google Scholar 

  8. Voskresenskaya O (2013) Kinetic and thermodynamic stability of cerium(IV) complexes with a series of aliphatic organic compounds. Nova Science Publishers Inc, New York

    Google Scholar 

  9. Voskresenskaya OO, Skorik NA, Yuzhakova YV (2018) Russ J Gen Chem 88:721

    Article  CAS  Google Scholar 

  10. Kiselev YuM (2011) The problem of oxidation states stabilization. Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  11. Spitsyn VI, Martynenko LI (eds) (1974) Coordination chemistry of rare-earth elements. Mosc Univ, Moscow

    Google Scholar 

  12. Voskresenskaya OO, Skorik NA, Stepanova NV (2016) Russ J Gen Chem 89:1747

    Article  CAS  Google Scholar 

  13. Piro NA, Robinson JR, Walsh PJ, Schelter EJ (2014) Coord Chem Rev 260:2

    Article  Google Scholar 

  14. Evseev VP, Bamburov VG, Polyakov EV, Litvinov AY, Beketov AR (2016) A method of extraction separation of rare earth metals from nitric acid solutions. In: RU Patent 0002576763, Oct 3, 2016, (Chem Abstr 164:285755)

  15. Sridharan V, Menéndez JC (2010) Chem Rev 110:3805

    Article  CAS  Google Scholar 

  16. Kovacheva P, Todorovsky D, Mirchev N (2018) Mach Technol Mater 12:37

    Google Scholar 

  17. Slyusar IV, Dosovitsky GA, Retivov VM, Mikhlin AL, Kuznetsova DE, Dosovitsky AE (2016) A method for producing a high-purity aqueous solution of cerium(IV) nitrate (variants). In: RU Patent 0002601763, Sep 11, 2016; (2016) Chem Abstr 165:579793

  18. Voskresenskaya OO, Skorik NA, Naprienko EN (2019) Russ J Inorg Chem 64:511

    Article  CAS  Google Scholar 

  19. Hancock ML, Grulke EA, Yokel R (2018) In: Proc 2018 AIChE Annual Meeting. Pittsburgh, PA, p 405a

  20. Reed KJ, Costanzo WA, Erlichman JS, Bell EL (2015) Nanoceria for the Treatment of Oxidative Stress. In: US Patent 9,034,392, May 19, 2015; (2013) Chem Abstr 160:79807

  21. Shcherbakov AB, Zholobak N, Usatenko A, Tretyakov YD, Spivak NY (2011) Biotechnol Acta 4:9

    Google Scholar 

  22. Milenković I, Rabotić K, Matović A, Prekajski BM, Živković L, Jakovljević D, Gojgić-Cvijović G, Beškoski V (2018) J Serb Chem Soc 83:74

    Article  Google Scholar 

  23. Voskresenskaya OO, Skorik NA, Sokovikova NI (2019) Russ J Inorg Chem 64:1288

    Article  CAS  Google Scholar 

  24. Trubacheva LV, Pechurova NI (1981) Russ J Inorg Chem 26:1994

    Google Scholar 

  25. Brusa MA, Perissinotti LJ, Colussi AJ (1988) Inorg Chem 27:4474

    Article  CAS  Google Scholar 

  26. Fawzy A, Hassan RM, Althagafi I, Morad M (2016) Adv Mater Lett 7:376

    Article  CAS  Google Scholar 

  27. Jattinagoudar L, Byadagi KS, Nandibewoor ST, Chimatadar SA (2015) Synth React Inorg Met-Org Chem 45:1138

    Article  CAS  Google Scholar 

  28. Zhdanov YA, Minkin VI (1966) Correlation analysis in organic chemistry. Rostov Uni, Rostov on Don

  29. Brønsted JN, Pedersen KJ (1924) Z Phys Chem 108:185

    Google Scholar 

  30. Palm VA (1977) Fundamentals of quantitative theory of organic reactions. Khimiya, Leningrad

    Google Scholar 

  31. Tratnyek PG (1998) Correlation analysis of the environmental reactivity of organic substances. In: Macalady DL (ed) Perspectives in environmental chemistry. Oxford University Press, New York, p 167

    Google Scholar 

  32. Schmid R, Sapunov VN (1982) Non-Formal Kinetics. Verlag Chemie, Weinheim

    Google Scholar 

  33. Hammett LP (1935) Chem Rev 17:125

    Article  CAS  Google Scholar 

  34. Taft RW (1953) J Amer Chem Soc 75:4231

    Article  CAS  Google Scholar 

  35. Voskresenskaya OO, Skorik NA, Naprienko EN (2015) Book of abstracts Int. Heterocyclic Congress KOST-2015. Mosc Univ, Moscow, p 410

  36. Denisov ET (1971) Rate constants of homolytic liquid-phase reactions. Science, Moscow

    Google Scholar 

  37. Candlin JP, Taylor KA, Thompson DT (1968) Reactions of transition metal-complexes. Elsevier Publishing Company, Amsterdam-London-New York

    Google Scholar 

  38. Shorter J (1973) Correlation analysis in organic chemistry: an introduction to linear free energy relationships. Clarendon Press, Oxford

    Google Scholar 

  39. Williams A (2003) Free energy relationships in organic and bio-organic chemistry. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  40. Ploom A, Tuulmets A, Järv J (2011) Cent Eur J Chem 9:910

    CAS  Google Scholar 

  41. Chapman NB, Shorter J (eds) (2012) Correlation analysis in chemistry: recent advances. Springer Science & Business Media, Berlin

    Google Scholar 

  42. Martell AE, Smith RM, Motekaitis RJ (2004) NIST Critically Selected Stability Constants of Metal Complexes. In: Database: Version 8.0. National Inst of Standards and Technology, Gaithersburg, https://www.nist.gov/srd/nist46

  43. Stability Constants Database and Mini-SCDatabase: Version 5.3. (2003) IUPAC and Academic Software, Timble, www.acadsoft.co.uk/scdbase/scdbase.htm

  44. Skorik NA, Chernov EB (2009) Calculations with Personal Computers in Coordination Chemistry. In: Tomskii Gos Univ, Tomsk, https://chem.tsu.ru

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga O. Voskresenskaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voskresenskaya, O.O., Skorik, N.A. Relative kinetic stability towards redox decomposition of cerium(IV) complexes with some organic compounds. Monatsh Chem 151, 533–542 (2020). https://doi.org/10.1007/s00706-020-02585-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02585-7

Keywords

Navigation