Skip to main content
Log in

Silica-supported heterogeneous catalysts-mediated synthesis of chalcones as potent urease inhibitors: in vitro and molecular docking studies

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

We herein report a facile and high yielding protocol for silica-supported heterogeneous catalysts-mediated synthesis of chalcones. A comparison of results of our synthesis with conventional synthetic protocols is also being offered to assess the efficiency of the prepared catalysts. Biological evaluation of the newly synthesized compounds as urease inhibitors was performed. Most of the compounds were found to have potent urease inhibition activity. The chalcone 3-(3-hydroxyphenyl)-1-phenylpropenone was found to be the most potent with percentage inhibition 86.17 ± 0.89 and half maximal inhibitory concentration (IC50) value 11.51 ± 0.03 µM. The molecular docking study emphasized that the same congeners 3-(furan-2-yl)-1-(4-hydroxyphenyl)propenone, 3-(4-hydroxyphenyl)-1-(4-methoxyphenyl)propanone, and 3-[4-(dimethylamino)phenyl]-1-(p-tolyl)propenone showed very good inhibitory potential against urease and show a higher docking scores 5718, 5940, 5596 and an ACE of − 246.66, − 244.79, and − 243.06 kJ/mol, respectively than the control ligand.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Joel MS (1982) CACS Symposium Series 192. American Chemical Society, Washington DC, p 1

    Google Scholar 

  2. Londeree DJ (2002) Silica–Titania composites for water treatment. M. Eng. Thesis, University of Florida, Florida

  3. Xinhong Z, Xiaolai W (2007) J Mol Catal A Chem 261:225

    Google Scholar 

  4. Ballesteros JF, Sanz MJ, Ubeda A, Miranda MA, Iborra S, Paya M, Alcaraz M (1995) J Med Chem 38:2794

    CAS  PubMed  Google Scholar 

  5. Hsieh HK, Tsao LT, Wang JP, Lin CN (2000) J Pharm Pharmacol 52:163

    CAS  PubMed  Google Scholar 

  6. Go ML, Wu X, Liu XL (2005) Curr Med Chem 12:483

    CAS  Google Scholar 

  7. Kamble VM (2011) J Chem Pharm Res 3:639

    CAS  Google Scholar 

  8. Mukerjee VK, Prased AK, Raj AG, Brakhe ME, Olsen CE, Jain SC, Parmer VP (2001) Bioorg Med Chem 9:337

    Google Scholar 

  9. Liu UM, Wilairat P, Croft SL, Tan AL, Go M (2003) Bioorg Med Chem 11:2729

    CAS  PubMed  Google Scholar 

  10. Sivakumar PM, Babu SK, Mukesh D (2007) Chem Pharm Bull 55:44

    CAS  PubMed  Google Scholar 

  11. Singh HP, Chauhan CS, Pandeya SN, Sharma CS, Srivastava B, Singhal M (2010) Der Pharmacia Lettre 2:460

    CAS  Google Scholar 

  12. Viana GS, Bandeira MA, Mantos FJ (2003) Phytomedicine 10:189

    CAS  PubMed  Google Scholar 

  13. Selvam P (2008) Int J Chem Sci 6:1196

    CAS  Google Scholar 

  14. Tiwari N, Dwivedi B, Nizamuddin KF, Nakanshi Y, Lee KH (2002) Bioorg Med Chem 10:699

    Google Scholar 

  15. Vijay K (2010) Indian J Chem 49:1109

    Google Scholar 

  16. Zuo Y (2012) Eur J Med Chem 50:393

    CAS  PubMed  Google Scholar 

  17. Debarshi KM, Sanjay KB, Vivek A (2015) Eur J Med Chem 98:69

    Google Scholar 

  18. Ducki S, Forrest R, Hadfield JA, Kendall A, Lawrence NJ, Mc-Gown AT, Rennison D (1998) Bioorg Med Chem 8:1051

    CAS  Google Scholar 

  19. Tajudeen BA, Mohammad KK, Salar U, Chigurupati S, Fasina T, Ali F, Wadood A, Taha M, Sekhar NS, Ghufran M, Parveen S (2018) Bioorg Chem 79:179

    Google Scholar 

  20. Hasan A, Khan KM, Sher M, Maharvi GM, Nawaz SA, Choudhary MI, Rahman A, Supuran CT (2005) J Enzyme Inhib Med Chem 20:41

    CAS  PubMed  Google Scholar 

  21. Straub TS (1995) Tetrahedron Lett 36:663

    CAS  Google Scholar 

  22. Sandler S, Karo W (1972) Organic functional group preparations, vol 3. Elsevier, Amsterdam, p 372

    Google Scholar 

  23. Bergmann ED, Ginsburg D, Pappo R (2004) Organic Reactions, vol 10. ACS Division of Chemistry, p 179

  24. Chetana BP (2009) J Pharm Sci Res 3:11

    Google Scholar 

  25. Mobley HLT (2012) Peptide Sci 13:789

    Google Scholar 

  26. Abdullah MA, Thulaia, Abdulsalam AN (2019) Synth Commun 49:1613

    Google Scholar 

  27. Fernandes AE, Jonas AM (2019) Catal Today 334:173

    CAS  Google Scholar 

  28. Jin R, Zheng D, Liu R, Liu G (2018) ChemCatChem 10:1739

    CAS  Google Scholar 

  29. Ye R, Liu WC, Han HL, Somorjai GA (2018) ChemCatChem 10:1666

    CAS  Google Scholar 

  30. Pelletier A, Jeremie DA, Basset JM (2016) Acc Chem Res 49:664

    CAS  PubMed  Google Scholar 

  31. Lee YT, Fong TH, Chen HM, Chang CY, Wang YH, Chern CY, Chen YH (2014) Molecules 19:641

    PubMed  PubMed Central  Google Scholar 

  32. Raza AR, Sultan A, Nisar U, Janjua MRSA, Khan KM (2016) Mod Chem Appl 4:173

    Google Scholar 

  33. Tal DM, Einan E, Mazur Y (1981) Tetrahedron 37:4327

    CAS  Google Scholar 

  34. Weatherburn MW (1967) Anal Chem 39:971

    CAS  Google Scholar 

  35. Syam S, Abdelwahab SI, Mamary MA, Mohan S (2012) Molecules 17:6179

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sharma B (2011) Asian J Chem 23:2468

    CAS  Google Scholar 

  37. Zheng CJ, Jiang SM, Chen ZH, Ye BJ, Piao HR (2011) Arch Pharm 344:689

    CAS  Google Scholar 

  38. Dina SD, Yuval I, Ruth N, Haim JW (2005) Nucleic Acids Res 33:363

    Google Scholar 

  39. Channar PA, Saeed A, Albericio F, Larik FA, Abbas H, Raza QM, Sung YH (2017) Molecules 22:1352

    PubMed Central  Google Scholar 

  40. Sawhney N, Kumar M, Lal R, Sharma AK, Sharma M (2017) J Mol Liq 236:422

    CAS  Google Scholar 

  41. Ansari FL, Wadood A, Ullah A, Iftikhar F, Ul-Haq Z (2009) J Enzyme Inhib Med Chem 24:151

    CAS  PubMed  Google Scholar 

  42. Zheng CJ, Jiang SM, Chen ZH, Ye BJ, Piao HR (2011) Arch Pharm (Weinheim) 344:689

    CAS  Google Scholar 

  43. Ansari FL, Umbreen S, Hussain L, Makhmoor T, Nawaz SA, Lodhi MA, Khan SN, Shaheen F, Choudhary, Muhammad I, Atta R (2005) Chem Biodivers 2:487.

  44. Zhao PL, Liu CL, Huang W, Wang YZ, Yang GF (2007) J Agric Food Chem 55:5697

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to Higher Education Commission (HEC) of Pakistan for funding Dr. Aeysha Sultan under Start-up Research Grant Program (SRGP) for project No 1507, as well as for financial assistance for EIMS and NMR analyses. We are also thankful to Government College University Faisalabad for assistance in FTIR and UV analyses. The authors thank the Researchers Supporting Project number (RSP-2019/6), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Acevedo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultan, A., Shajahan, S., Ahamad, T. et al. Silica-supported heterogeneous catalysts-mediated synthesis of chalcones as potent urease inhibitors: in vitro and molecular docking studies. Monatsh Chem 151, 123–133 (2020). https://doi.org/10.1007/s00706-019-02534-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-02534-z

Keywords

Navigation