Skip to main content
Log in

Charge–discharge performances of the Si–O–Al electrodes

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The increase of thickness of silicon films as negative electrodes of lithium-ion batteries is known to result in notable worsening their cyclability. Some recently, the authors have shown that the layered composites based on the Si–O–Al system possess much better cyclability. The present work declares that cyclic stability depends also on parameters of galvanostatic cycling. The composite films of thickness 3 μm, composed of 14 wt% of oxygen, 17 wt% of aluminum, and 67 wt% of silicon, deposited in the form of multi-layered structures, are shown to demonstrate a sufficiently high stability over more than 200 charge–discharge cycles with the capacity fading less than 0.09% per cycle if the cycling is performed within the potential range of 0.1–0.7 V relative to the lithium reference electrode.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kulova TL, Skundin AM, Andreev VN, Gryzlov DY, Mironenko AA, Rudy AS, Gusev VN, Naumov VV (2013) Electrochem Energy 13:136 (in Russian)

    CAS  Google Scholar 

  2. Kulova TL, Skundin AM, Andreev VN, Gryzlov DY, Mironenko AA, Rudy AS, Gusev VN, Naumov VV (2015) Russ J Electrochem 51:1157

    Article  CAS  Google Scholar 

  3. Kulova TL, Mironenko AA, Skundin AM, Rudy AS, Naumov VV, Pukhov DE (2016) Int J Electrochem Sci 11:1370

    CAS  Google Scholar 

  4. Netz A, Huggins RA, Weppner W (2003) J Power Sources 119–121:95

    Article  Google Scholar 

  5. Ohara S, Suzuki J, Sekine K, Takamura T (2003) J Power Sources 119–121:591

    Article  Google Scholar 

  6. Takamura T, Ohara S, Uehara M, Suzuki J, Sekine K (2004) J Power Sources 129:96

    Article  CAS  Google Scholar 

  7. Lee KL, Jung JY, Lee SW, Moon HS, Park JW (2004) J Power Sources 129:270

    Article  CAS  Google Scholar 

  8. Ohara S, Suzuki J, Sekine K, Takamura T (2004) J Power Sources 136:303

    Article  CAS  Google Scholar 

  9. Zhang Y, Fu ZW, Qin QZ (2004) Electrochem Commun 6:484

    Article  CAS  Google Scholar 

  10. Park MS, Wang GX, Liu HK, Dou SX (2006) Electrochim Acta 51:5246

    Article  CAS  Google Scholar 

  11. Maranchi JP, Hepp AF, Kumta PN (2003) Electrochem Solid State Lett 6:A198

    Article  CAS  Google Scholar 

  12. Chen LB, Xie JY, Yu HC, Wang TH (2008) Electrochim Acta 53:8149

    Article  CAS  Google Scholar 

  13. Lu Z, Zhang L, Liu X (2010) J Power Sources 195:4304

    Article  CAS  Google Scholar 

  14. Doh CH, Shin HM, Kim DH, Ha YC, Jin BS, Kim HS, Moon SI, Veluchamy A (2008) Electrochem Commun 10:233

    Article  CAS  Google Scholar 

  15. Luais E, Sakai J, Desplobain S, Gautier G, Van Tran F, Ghamouss F (2013) J Power Sources 242:166

    Article  CAS  Google Scholar 

  16. Green M, Fielder E, Scrosati B, Wachtler M, Moreno JS (2003) Electrochem Solid State Lett 6:A75

    Article  CAS  Google Scholar 

  17. Baranchugov V, Markevich E, Pollak E, Salitra G, Aurbach D (2007) Electrochem Commun 9:796

    Article  CAS  Google Scholar 

  18. Wen Z, Lu D, Lei J, Fu Y, Wang L, Sun J (2011) J Electrochem Soc 158:A809

    Article  CAS  Google Scholar 

  19. Jeon BJ, Lee JK (2011) Electrochim Acta 56:6261

    Article  CAS  Google Scholar 

  20. Chen H, Xiao Y, Wang L, Yang Y (2011) J Power Sources 196:6657

    Article  CAS  Google Scholar 

  21. Yin YX, Wan LJ, Guo YG (2012) Chin Sci Bull 57:4104

    Article  CAS  Google Scholar 

  22. Ma D, Cao Z, Hu A (2014) Nano Micro Lett 6:347

    Article  Google Scholar 

  23. Feng K, Li M, Liu W, Kashkooli AG, Xiao X, Cai M, Chen Z (2018) Small 14:1702737

    Article  Google Scholar 

  24. Li P, Zhao G, Zheng X, Xu X, Yao C, Sun W, Dou SX (2018) Energy Storage Mater 15:422

    Article  Google Scholar 

  25. Zhang X, Kong D, Li X, Zhi L (2018) Adv Funct Mater 28:1806061

    Google Scholar 

  26. Kasavajjula U, Wang C, Appleby AJ (2007) J Power Sources 163:1003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out using the equipment of the Facilities Sharing Center "Diagnostics of Micro- and Nanostructures". The electrochemical part of the work was financially supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Skundin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironenko, A.A., Fedorov, I.S., Rudy, A.S. et al. Charge–discharge performances of the Si–O–Al electrodes. Monatsh Chem 150, 1753–1759 (2019). https://doi.org/10.1007/s00706-019-02497-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-02497-1

Keywords

Navigation