Skip to main content
Log in

Investigation of kinetics and mechanism of oxidation of acetoacetanilide in alkaline medium using hexacyanoferrate(III)

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of acetoacetanilide by potassium hexacyanoferrate(III) at a constant ionic strength of 0.5 mol dm−3 in aqueous alkaline medium has been studied successfully. The reaction follows less than unit order kinetics with respect to acetoacetanilide and hydroxide ion concentrations. The effect of dielectric constant and ionic strength was investigated. Activation parameters with respect to slow step were determined and discussed. Thermodynamic quantities were also determined. The final product of the reaction has been recognised as a dimer with the evidence of LCMS, UV–Vis, and IR spectra. Based on the experimental results and product analysis a mechanism involving free radicals was proposed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Koleske JV (2012) Paint and coating testing manual. Gardener-Sward Handbook, 14th edn. ASTM International, West Conshohocken, p 198

  2. Hunger K, Herbst W (2012) Pigments, organic in Ullmann’s encyclopedia of industrial chemistry. Willey-VCH, Weinheim

    Google Scholar 

  3. Dong JH, Qiu KY, Feng XD (1994) Macromol Chem Phys 195:823

    Article  CAS  Google Scholar 

  4. Priya NP, Firdous AP, Jeevana R, Aravindakshan KK (2015) Indian J Pharm Sci 77:655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Audeh CA, Smith JRL (1970) J Chem Soc (B):1280

  6. Rao VS, Sethuran B, Rao TN (1979) Indian J Chem 17A:260

    CAS  Google Scholar 

  7. Ball S, Bruice T (1980) J Am Chem Soc 102:6498

    Article  CAS  Google Scholar 

  8. Shimpia R, Fadata R, Janraob DM, Farooquic M (2014) J Chem Pharm Res 6:1011

    Google Scholar 

  9. Singh MP, Ghosh S (1957) Z Phys Chem (Leipzig) 207:187

    CAS  Google Scholar 

  10. Sharma VK (2002) Adv Environ Res (Oxford, UK) 6:143

    Article  CAS  Google Scholar 

  11. Laviron E (1979) J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  12. Bard AJ, Faulkner LR (2004) Electrochemical methods fundamentals and applications, 2nd edn. Wiley, Hoboken, p 236

    Google Scholar 

  13. Zaleska B, Lis S (2001) Synth Commun 31:189

    Article  CAS  Google Scholar 

  14. Singh MP, Ghosh S (1955) Z Phys Chem (Leipzig) 204:1

    CAS  Google Scholar 

  15. Fiegl F (1975) Spot tests in organic analysis. Elsevier, New York, p 212

    Google Scholar 

  16. Singh MP, Ghosh S (1957) Z Phys Chem (Leipzig) 207:187

    CAS  Google Scholar 

  17. Singh MP, Ghosh S (1957) Z Phys Chem (Leipzig) 207:198

    CAS  Google Scholar 

  18. Wiberg KB, Nigh WG (1965) J Am Chem Soc 87:3849

    Article  CAS  Google Scholar 

  19. Kochi JK, Graybill BM, Kwiz M (1964) J Am Chem Soc 86:5257

    Article  CAS  Google Scholar 

  20. Cho LY, Romero JR (1995) Tetrahedron Lett 36:8757

    Article  CAS  Google Scholar 

  21. Laloo D, Mahanti MK (1986) Pol J Chem 60:589

    CAS  Google Scholar 

  22. Panigrahi GP, Misro PK (1977) Indian J Chem 15A:1066

    CAS  Google Scholar 

  23. Harihar AL, Kembhavi MR, Nandibewoor ST (2000) Monatsh Chem 131:739

    Article  CAS  Google Scholar 

  24. Goel A, Sharma R (2012) J Chem Eng and Mat Sci 3:1

    CAS  Google Scholar 

  25. Baciocchi E, Ruzzlconi R (1989) In: Minisci F (ed), Free radicals in synthesis and biology. Kluwer Academic Publisher Series C: Mathematical and Physical Sciences, vol 260, p 155

  26. Pauling L (1969) In the nature of the chemical bond, 3rd edn. Oxford and IBH publishers, New Delhi

    Google Scholar 

  27. Pattar V, Magdum P, Patil D, Nandibewoor ST (2016) J Chem Sci 128:477

    Article  CAS  Google Scholar 

  28. Farokhi SA, Nandibewoor ST (2003) Tetrahedron 59:7595

    Article  CAS  Google Scholar 

  29. Vogel AI (1951) Quantitative inorganic analysis, 2nd edn. Woolwich Polytechnic, London, p 242

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the UGC, New Delhi by awarding UGC-BSR Faculty Fellowship to Dr. S. T. Nandibewoor and UGC-BSR Fellowship to J. T. Bagalkoti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanappa T. Nandibewoor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 271 kb)

Appendix

Appendix

From Scheme 2,

$$\mathrm{R}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{ }=\mathrm{ }-\frac{\mathrm{d}{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}{\mathrm{d}\mathrm{t}}=k[\mathrm{C}]$$
(7)

From the Law of mass action, second equilibrium constant is given by

$${K}_{2}\mathrm{ }=\mathrm{ }\frac{[\mathrm{C}]}{{{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{f}}{{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}}^{-}]}_{\mathrm{f}}}$$

This can be rearranged as

$$\left[\mathrm{C}\right]=\boldsymbol{ }{K}_{2}{{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}}^{-}]}_{\mathrm{f}}{{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{f}}$$
(8)

Equation (7) takes the form upon substituting the [C] from Eq. (8)

$$\mathrm{R}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{ }=\mathrm{ }-\frac{\mathrm{d}[\mathrm{H}\mathrm{C}\mathrm{F}(\mathrm{I}\mathrm{I}\mathrm{I})]}{\mathrm{d}\mathrm{t}}=k{K}_{2}\boldsymbol{ }{{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}}^{-}]}_{\mathrm{f}}{{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{f}}$$
(9)

The first equilibrium constant is given by

$${K}_{1}\mathrm{ }=\mathrm{ }\frac{{{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}}^{-}]}_{\mathrm{f}}}{{\left[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}\right]}_{\mathrm{f}}{[{\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}}}$$

This can be rearranged as

$${{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}}^{-}]}_{\mathrm{f}}=\mathrm{ }\mathrm{ }{K}_{1}{\left[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}\right]}_{\mathrm{f}}{[{\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}}$$
(10)

Substituting Eqs. (10) in (9)

$$\mathrm{R}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{ }=\mathrm{ }-\frac{\mathrm{d}[{\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}{\mathrm{d}\mathrm{t}}=k{K}_{1}\boldsymbol{ }{K}_{2}{\left[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}\right]}_{\mathrm{f}}{[{\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}}{{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{f}}$$
(11)

The total concentration of ACTN is given

$${[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{T}}={[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{f}}+ {{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}}^{-}]}_{\mathrm{f}}+ [\mathrm{C}]$$

From Eqs. (10) and (11).

$${[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{T}}={[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{f}}+ {K}_{1}{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{f}}{[{\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}}+ {K}_{1}\boldsymbol{ }{K}_{2}{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{f}}{[{\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}}{{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{f}}$$
$${[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{T}}={[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{f}} (1+ {K}_{1}{[{\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}}+ {K}_{1}\boldsymbol{ }{K}_{2}{[{\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}}{{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{f}} )$$
$${[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{f}}=\boldsymbol{ }\frac{{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{T}}}{1+ {K}_{1}{{[\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}\mathrm{ }}+ {K}_{1}\boldsymbol{ }{K}_{2}{{[\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}\mathrm{ }}{{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{f}}}$$
(12)

The total concentration of OH is given by

$${{[\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{T}}= {{[\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}\mathrm{ }}+{{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}}^{-}]}_{\mathrm{f}}+[\mathrm{C}]$$

From Eqs. (8) and (10)

$${{[\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{T}}=\boldsymbol{ }{{[\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}\mathrm{ }}+{K}_{1}{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{f}}{{[\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}\mathrm{ }}+{K}_{1}\boldsymbol{ }{K}_{2}{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{f}}{{[\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}\mathrm{ }}{{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{f}}$$
$${{[\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{T}}=\boldsymbol{ }{{[\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}\mathrm{ }}(\mathrm{ }1+{K}_{1}{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{f}}+{K}_{1}\boldsymbol{ }{K}_{2}{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{f}}{{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{f}})$$
$${{[\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}\mathrm{ }}=\boldsymbol{ }\frac{{{[\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{T}}}{1+{K}_{1}{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{f}}+{K}_{1}\boldsymbol{ }{K}_{2}{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{f}}{{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{f}}}$$

Because of low concentrations of Fe(CN)63−, ACTN used

$$\therefore {{[\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}\mathrm{ }}= {{[\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{T}}$$
(13)

The total concentration of Fe(CN)63− is given by

$${{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{T}}= {{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{f}}+ [\mathrm{C}]$$
$${{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{T}}= {{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{f}}+ {K}_{1}\boldsymbol{ }{K}_{2}{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{f}}{{[\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}\mathrm{ }}{{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{f}}$$
$${{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{T}}= {{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{f}}( 1+ {K}_{1}\boldsymbol{ }{K}_{2}{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{f}}{{[\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}\mathrm{ }})$$
$${{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{f}}= \frac{{{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}_{\mathrm{T}}}{ 1+ {K}_{1}\boldsymbol{ }{K}_{2}{[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]}_{\mathrm{f}}{{[\mathrm{O}\mathrm{H}}^{-}]}_{\mathrm{f}}}$$
(14)

Substituting the value of (12) (13), and (14) in (11) and omitting subscripts T and f

$$\mathrm{R}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{ }=\frac{k{K}_{1}\boldsymbol{ }{K}_{2}[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]{{[\mathrm{O}\mathrm{H}}^{-}][\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}{(1+ {\mathrm{K}}_{1}{[\mathrm{O}\mathrm{H}}^{-}]+ {K}_{1}\boldsymbol{ }{K}_{2}{[\mathrm{O}\mathrm{H}}^{-}]{[\mathrm{F}\mathrm{e}({\mathrm{C}\mathrm{N})}_{6}}^{3-}])(1+ {K}_{1}\boldsymbol{ }{K}_{2}\left[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}\right]{[\mathrm{O}\mathrm{H}}^{-}])}$$

Since [Fe(CN)63−] <  < 1 above equation becomes

$$\mathrm{R}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{ }=\frac{k{K}_{1}\boldsymbol{ }{K}_{2}[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]{{[\mathrm{O}\mathrm{H}}^{-}][\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}{\left(1+ {K}_{1}{[\mathrm{O}\mathrm{H}}^{-}\right])(1+ {K}_{1}\boldsymbol{ }{K}_{2}\left[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}\right]{[\mathrm{O}\mathrm{H}}^{-}])}$$
$$\frac{\mathrm{R}\mathrm{a}\mathrm{t}\mathrm{e}}{{[\mathrm{F}\mathrm{e}(\mathrm{C}\mathrm{N})}_{6}^{3-}]}=\mathrm{ }\frac{k{K}_{1}\boldsymbol{ }{K}_{2}[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]{[\mathrm{O}\mathrm{H}}^{-}]}{1+\mathrm{ }{K}_{1}{K}_{2}[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]{[\mathrm{O}\mathrm{H}}^{-}]+{K}_{1}{[\mathrm{O}\mathrm{H}}^{-}]+{K}_{1}^{2}{K}_{2}[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]{{[\mathrm{O}\mathrm{H}}^{-}]}^{2}}$$
(15)

Neglecting square terms in view of low value as compared to unity, hence Eq. (15) becomes

$$\frac{\mathrm{R}\mathrm{a}\mathrm{t}\mathrm{e}}{{[\mathrm{F}\mathrm{e}({\mathrm{C}\mathrm{N})}_{6}}^{3-}]}={k}_{\mathrm{o}\mathrm{b}\mathrm{s}}\mathrm{ }=\frac{k{\mathrm{ }K}_{1}\boldsymbol{ }{K}_{2}[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]{[\mathrm{O}\mathrm{H}}^{-}]}{1+\mathrm{ }{K}_{1}{K}_{2}[\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{N}]{[\mathrm{O}\mathrm{H}}^{-}]+\mathrm{ }{K}_{1}{[\mathrm{O}\mathrm{H}}^{-}]}$$
(16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagalkoti, J., Nandibewoor, S.T. Investigation of kinetics and mechanism of oxidation of acetoacetanilide in alkaline medium using hexacyanoferrate(III). Monatsh Chem 150, 1469–1478 (2019). https://doi.org/10.1007/s00706-019-02482-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-02482-8

Keywords

Navigation