Skip to main content
Log in

Activity and stability of lysozyme obtained from Rutilus frisii kutum in the presence of nickel oxide nanoparticles

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The aim of this study was to examine the effects of nickel oxide nanoparticles on the activity and thermal stability of lysozyme obtained from Rutilus frisii kutum. The synthesis of the nanoparticles was performed by the chemical co-precipitation method. To evaluate the synthesis process, X-ray diffraction, scanning electron microscope, and Fourier transform infrared spectroscopy were evaluated. The size of the nanoparticles was in the range of 20–30 nm with a spherical morphology and gray–black color. To determine thermal stability, the fraction unfolded curve and ΔG° as a function of lysozyme temperature in the absence and presence of the nanoparticles were obtained. With respect to Tm at Δ = 0, we obtained Tm of lysozyme from 314 K in the absence of the nanoparticles to 332 K in the presence of 0.0001 g/cm3 nickel oxide nanoparticles. Therefore, thermal stability of lysozyme was increased with the rise of nanoparticles’ concentrations. The reversible unfolding as a result of heating lysozyme was observed at Tm = 318 K. Kinetic parameters, Km and Vmax, of the enzyme were also determined from 0.007 g/cm3 and 172 units/min in the absence of the nanoparticles to 0.005 g/cm3 and 104.166 units/min in the presence of 0.0001 g/cm3 nickel oxide nanoparticles, respectively. The emission intensity of lysozyme decreased in the presence of the nanoparticles, while its absorption intensity increased without any shift at 340 and 280 nm, respectively. Consequently, the nickel oxide nanoparticles can interact with lysozyme that results in decreasing its enzymatic activity due to changes in its active site.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Simonet BM, Valcárcel M (2009) Anal Bioanal Chem 393:17

    Article  CAS  Google Scholar 

  2. Raghupathi KR, Koodali RT, Manna AC (2011) Langmuir 27:4020

    Article  CAS  Google Scholar 

  3. Salata OV (2004) J Nanobiotechnol 2:2

    Article  Google Scholar 

  4. Cheng YH, Lai CM, Lin KS, Wang SS (2017) Colloids Surf B 151:344

    Article  CAS  Google Scholar 

  5. Roco MC (2005) Environ Sci Technol 39:5

    Article  Google Scholar 

  6. Taghavi SM, Momenpour M, Azarian M, Ahmadian M, Souri F, Taghavi SA, Sadeghain M, Karchani M (2013) Electron Physician 5:706

    PubMed  PubMed Central  Google Scholar 

  7. Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2010) Adv Drug Deliv 61:457

    Article  Google Scholar 

  8. Zhu Y, Zhao Q, Li Y, Cai X, Li W (2006) J Nanosci Nanotechnol 6:1357

    Article  CAS  Google Scholar 

  9. Templeton RC, Ferguson PL, Washburn KM, Scrivens WA, Chandler GT (2006) Environ Sci Technol 40:7387

    Article  CAS  Google Scholar 

  10. Saurabh S, Sahoo PK (2008) Aquacult Res 39:223

    Article  CAS  Google Scholar 

  11. Callewaert L, Michiels CW (2010) J Biosci 35:127

    Article  CAS  Google Scholar 

  12. Momeni L, Shareghi B, Saboury AA (2017) J Biomol Struct Dyn 35:1381

    Article  CAS  Google Scholar 

  13. Lee S, Hwang SH, Jeong J, Han Y, Kim SH, Lee DK, Lee HS, Chung ST, Jeong J, Roh C, Huh YS, Cho WS (2016) Part Fibre Toxicol 13:30

    Article  Google Scholar 

  14. Capasso L, Camatini M, Gualtieri M (2014) Toxicol Lett 226:28

    Article  CAS  Google Scholar 

  15. Duan WX, He MD, Mao L, Qian FH, Li YM, Pi HF, Liu C, Zhou Z (2015) Toxicol Appl Pharmacol 286:80

    Article  CAS  Google Scholar 

  16. Sudha N, Yousuf S, Israel EVMV, Paulraj MS, Dhanaraj P (2016) Colloids Surf B 141:423

    Article  CAS  Google Scholar 

  17. Natesan S, Sowrirajan C, Yousuf S, Enoch IV (2015) Carbohydr Polym 115:589

    Article  Google Scholar 

  18. Chandrasekaran S, Sudha N, Premnath D, Enoch IV (2015) J Biomol Struct Dyn 33:1945

    Article  CAS  Google Scholar 

  19. Sudha N, Israel VM (2015) J Solut Chem 44:1367

    Article  CAS  Google Scholar 

  20. Hu X, Yu Z, Liu R (2013) Spectrochim Acta A 108:50

    Article  CAS  Google Scholar 

  21. Vignesh G, Manojkumar Y, Sugumar K, Arunachalam S (2015) J Lumin 157:297

    Article  CAS  Google Scholar 

  22. Wu L, Ma B, Sheng Y, Wang W (2008) J Mol Struct 891:167

    Article  CAS  Google Scholar 

  23. Liu Y, Liu R (2012) Food Chem Toxicol 50:3298

    Article  CAS  Google Scholar 

  24. Shang W, Nuffer JH, Muñiz-Papandrea VA, Colón W, Siegel RW, Dordick JS (2009) Small 5:470

    Article  CAS  Google Scholar 

  25. Chakraborti S, Chatterjee T, Joshi P, Poddar A, Bhattacharyya B, Singh SP, Chakrabarti P (2010) Langmuir 26:3506

    Article  CAS  Google Scholar 

  26. Chakraborti S, Sarwar S, Chakrabarti P (2013) J Phys Chem 11:13397

    Article  Google Scholar 

  27. Dijk EV, Hoogeveen A, Abeln S (2015) PLoS Comput Biol 11:1004277

    Article  Google Scholar 

  28. Eisenthal R, Danson MJ, Hough DW (2007) Trends Biotechnol 25:247

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this study under the Grant no. 134396/KM by the Caspian Sea Basin Research Center of Guilan is gratefully acknowledged. The authors would like to offer special thanks to research deputy of the University of Guilan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud R. Aghamaali.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolouei-Nia, B., Aghamaali, M.R., Asoodeh, A. et al. Activity and stability of lysozyme obtained from Rutilus frisii kutum in the presence of nickel oxide nanoparticles. Monatsh Chem 150, 363–369 (2019). https://doi.org/10.1007/s00706-018-2323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2323-7

Keywords

Navigation