Skip to main content
Log in

Effects of Small Biomolecules on Lysozyme Crystallization

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

To develop appropriate biocompatible nucleants, glutathione (GSH), glycine (Gly) and cysteine (Cys) were used as the biomolecular additives to study their effect on the regulation of lysozyme crystallization. Characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, circular dichroism, etc., the results show that GSH can effectively promote protein crystallization under even lower concentrations of lysozyme by enhancing the nucleation rate, comparing with the additives of Gly and Cys, whereas lysozyme crystal structures produced in the presence of the biomolecular additives are similar to those in the absence of the additives. It shows in combination with molecular modeling that the stronger interactions between small biomolecular additives and the lysozyme LOOP accelerate the heterogeneous nucleation. It is suggested that such small biomolecules can be used as promising nucleants for promoting protein crystallization in the food and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beck C, Grimaldo M, Roosen-Runge F et al (2019) Following protein dynamics in real time during crystallization. Cryst Growth Des 19(12):7036–7045

    Article  Google Scholar 

  2. Sauter A, Roosen-Runge F, Zhang FJ et al (2015) Real-time observation of nonclassical protein crystallization kinetics. J Am Chem Soc 137(4):1485–1491

    Article  Google Scholar 

  3. Ferreira J, Castro F, Rocha F et al (2018) Protein crystallization in a droplet-based microfluidic device: hydrodynamic analysis and study of the phase behaviour. Chem Eng Sci 191:232–244

    Article  Google Scholar 

  4. Govada L, Chayen N (2019) Choosing the method of crystallization to obtain optimal results. Crystals 9(2):106

    Article  Google Scholar 

  5. Li J, Yan EK, Liu Y et al (2019) Comparison of the quality of protein crystals grown by CLPC seeds method. Crystals 9(10):501

    Article  Google Scholar 

  6. Chayen NE, Saridakis E (2008) Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods 5(2):147–153

    Article  Google Scholar 

  7. Yu ZR, Wang YL, Zhou J et al (2020) Progress on defects in organic crystal. Chem Ind Eng 37(2):19–29 (in Chinese)

    Google Scholar 

  8. Sánchez-García YI, Gutiérrez-Méndez N, Orozco-Mena RE et al (2019) Individual and combined effect of pH and whey proteins on lactose crystallization. Food Res Int 116:455–461

    Article  Google Scholar 

  9. Safronov VV, Krivonogova NV, Bezbakh I et al (2019) Temperature-induced nucleation and growth of protein single crystals. J Mol Liq 284:353–356

    Article  Google Scholar 

  10. Zhang CY, Liu J, Wang MY et al (2019) Protein crystallization irradiated by audible sound: the effect of varying sound frequency. Cryst Growth Des 19(1):258–267

    Article  Google Scholar 

  11. Tong XM, Kang JJ, Zhang JL et al (2018) Interfacial functional terminals enhance the heterogeneous nucleation of lysozyme crystals. CrystEngComm 20(18):2499–2510

    Article  Google Scholar 

  12. Li XC, Liu H, Tong XM et al (2019) Charged polymeric additives affect the nucleation of lysozyme crystals. CrystEngComm 21(12):1992–2001

    Article  Google Scholar 

  13. Li XY, Wang HY, Kuang XY et al (2017) Exploring the effects and mechanisms of carbon nanomaterial diversity on the morphology of lysozyme crystals. CrystEngComm 19(39):5873–5881

    Article  Google Scholar 

  14. D’Arcy A, Mac Sweeney A, Haber A (2003) Using natural seeding material to generate nucleation in protein crystallization experiments. Acta Crystallogr D Biol Cryst 59(7):1343–1346

    Article  Google Scholar 

  15. Chayen NE, Saridakis E, El-Bahar R et al (2001) Porous silicon: an effective nucleation-inducing material for protein crystallization 1 1 edited by R. Huber. J Mol Biol 312(4):591–595

    Article  Google Scholar 

  16. Ribeiro D, Kulakova A, Quaresma P et al (2014) Use of gold nanoparticles as additives in protein crystallization. Cryst Growth Des 14(1):222–227

    Article  Google Scholar 

  17. Saridakis E, Khurshid S, Govada L et al (2011) Protein crystallization facilitated by molecularly imprinted polymers. Proc Natl Acad Sci U S A 108(27):11081–11086

    Article  Google Scholar 

  18. Zhang B, Mei AR, Isbell MA et al (2018) DNA origami as seeds for promoting protein crystallization. ACS Appl Mater Interfaces 10(51):44240–44246

    Article  Google Scholar 

  19. Leite JP, Rodrigues D, Ferreira S et al (2019) Mesoporous metal–organic frameworks as effective nucleating agents in protein crystallography. Cryst Growth Des 19(3):1610–1615

    Article  Google Scholar 

  20. Yang XZ, Zhang CY, Wang QJ et al (2017) Utilization of cyclodextrins and its derivative particles as nucleants for protein crystallization. Cryst Growth Des 17(12):6189–6200

    Article  Google Scholar 

  21. Memon AH, Ding RS, Yuan QP et al (2019) Facile synthesis of alcalase-inorganic hybrid nanoflowers used for soy protein isolate hydrolysis to improve its functional properties. Food Chem 289:568–574

    Article  Google Scholar 

  22. Rosevear PR, Sellin S, Mannervik B et al (1984) NMR and computer modeling studies of the conformations of glutathione derivatives at the active site of glyoxalase I. J Biol Chem 259(18):11436–11447

    Article  Google Scholar 

  23. Jollow DJ, Mitchell JR, Zampaglione N et al (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11(3):151–169

    Article  Google Scholar 

  24. Ito L, Shiraki K, Yamaguchi H (2010) Amino acids and glycine ethyl ester as new crystallization reagents for lysozyme. Acta Cryst Sect F 66(6):750–754

    Article  Google Scholar 

  25. Ito L, Shiraki K, Yamaguchi H (2010) Comparative analysis of amino acids and amino-acid derivatives in protein crystallization. Acta Cryst Sect F 66(6):744–749

    Article  Google Scholar 

  26. Galkin O, Vekilov PG (2000) Are nucleation kinetics of protein crystals similar to those of liquid droplets? J Am Chem Soc 122(1):156–163

    Article  Google Scholar 

  27. Yasmeen S, Riyazuddeen (2017) Thermodynamics and binding mechanism of polyphenon-60 with human lysozyme elucidated by calorimetric and spectroscopic techniques. J Chem Thermodyn 110:79–86

    Article  Google Scholar 

  28. Louis-Jeune C, Andrade-Navarro MA, Perez-Iratxeta C (2012) Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins 80(2):374–381

    Article  Google Scholar 

  29. Hai YY, Zhang JL, Shi C et al (2016) Thin film composite nanofiltration membrane prepared by the interfacial polymerization of 1, 2, 4, 5-benzene tetracarbonyl chloride on the mixed amines cross-linked poly(ether imide) support. J Membr Sci 520:19–28

    Article  Google Scholar 

  30. Kong JL, Yu SN (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39(8):549–559

    Article  Google Scholar 

  31. Pelton JT, McLean LR (2000) Spectroscopic methods for analysis of protein secondary structure. Anal Biochem 277(2):167–176

    Article  Google Scholar 

  32. Barth A (2007) Infrared spectroscopy of proteins. Biochim Et Biophys Acta BBA Bioenergy 1767(9):1073–1101

    Article  Google Scholar 

  33. Poon GG, Lemke T, Peter C et al (2017) Soluble oligomeric nucleants: simulations of chain length, binding strength, and volume fraction effects. J Phys Chem Lett 8(23):5815–5820

    Article  Google Scholar 

  34. Lin DD, Luo Y, Wu S et al (2014) Investigation of the aggregation process of amyloid-β-(16-22) peptides and the dissolution of intermediate aggregates. Langmuir 30(11):3170–3175

    Article  Google Scholar 

  35. Lomakin A, Asherie N, Benedek GB (2003) Liquid-solid transition in nuclei of protein crystals. Proc Natl Acad Sci U S A 100(18):10254–10257

    Article  Google Scholar 

  36. Hsieh MC, Lynn DG, Grover MA (2017) Kinetic model for two-step nucleation of peptide assembly. J Phys Chem B 121(31):7401–7411

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21576206, 21621004), the National Key Research and Development Program (2016YFC1201502) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R46).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinli Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, S., Liu, H., Li, W. et al. Effects of Small Biomolecules on Lysozyme Crystallization. Trans. Tianjin Univ. 27, 359–365 (2021). https://doi.org/10.1007/s12209-020-00251-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-020-00251-x

Keywords

Navigation