Skip to main content
Log in

Bioactive amide and α-aminophosphonate inhibitors for methicillin-resistant Staphylococcus aureus (MRSA)

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Scaffolds of 2-acylamino-1,3,4-oxadiazole have been recently developed as transglycosylase inhibitors against MRSA. In the present study, structure–activity relationships of new derivatives of 2-acylamino-1,3,4-oxadiazole were explored with focus on the substitution of the aromatic rings. The in vitro antibacterial activity of these compounds against MRSA strain was evaluated using agar disc diffusion method. These inhibitors have an amide linker between 1,3,4-oxadiazole ring and the aromatic ring B. The role of this linker on the bioactivity of the compounds was also studied. The results showed promising series of 2-α-aminophosphonate-1,3,4-oxadiazole as inhibitors for MRSA strain. Both series revealed two structural features which appear to be essential for anti-MRSA activities, the first one is the incorporation of two electron-withdrawing groups at meta- and para- positions within aromatic ring B which contributed to a higher activity against MRSA strain. The second is the new α-aminophosphonate linker serving as bio-isosteric analogue of the corresponding amide linker and giving comparable results with the amide derivatives.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. US Department of Health and Human Services (2013) Antibiotic Resistance Threats in The United States, Section 3: Current Antibiotic Resistance Threats in the United States, by Microorganism. Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  2. Jevons MP (1961) Br Med J 1:124

    Article  Google Scholar 

  3. Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, Talan DA (2006) N Engl J Med 355:666

    Article  CAS  Google Scholar 

  4. Hiramatsu K (2001) Lancet Infect Dis 1:147

    Article  CAS  Google Scholar 

  5. Wilson P, Andrews JA, Charlesworth R, Walesby R, Singer M, Farrell DJ, Robbins M (2003) J Antimicrob Chemother 51:186

    Article  CAS  Google Scholar 

  6. Frazee BW, Lynn J, Charlebois ED, Lambert L, Lowery D, Perdreau-Remington F (2005) Ann Emerg Med 45:311

    Article  Google Scholar 

  7. Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, Jernigan JA, Harriman K, Harrison LH, Lynfield R, Farley MM (2005) N Engl J Med 352:1436

    Article  CAS  Google Scholar 

  8. Moran GJ, Amii RN, Abrahamian FM, Talan DA (2005) Emerg Infect Dis 11:928

    Article  Google Scholar 

  9. Cheng TJR, Wu YT, Yang ST, Lo KH, Chen SK, Chen YH, Huang WI, Yuan CH, Guo CW, Huang LY, Chen KT, Shih HW, Cheng YSE, Cheng WC, Wong CH (2010) Bioorg Med Chem 18:8512

    Article  CAS  Google Scholar 

  10. Zomova AM, Molodykh ZV, Kudryavtseva LA, Teplyakova LV, Fedorov SB, Ivanov BE (1986) Pharm Chem J 20:774

    Article  Google Scholar 

  11. El Gokha A, Ahmed A, Abdelwahed N, El Sayed I (2016) Int J Pharm Sci Rev Res 36:35

    Google Scholar 

  12. El-Boraey HAL, El-Gokha AAA, El-Sayed IET, Azzam MA (2015) Med Chem Res 24:2142

    Article  CAS  Google Scholar 

  13. Jin L, Song B, Zhang G, Xu R, Zhang S, Gao X, Hu D, Yang S (2006) Bioorg Med Chem Lett 16:1537

    Article  CAS  Google Scholar 

  14. Kukhar VPHH (2000) Aminophosphonic and aminophosphinic acids: chemistry and biological activity. Wiley, Chichester, p 468

    Google Scholar 

  15. Du S, Faiger H, Belakhov V, Baasov T (1999) Bioorg Med Chem 7:2671

    Article  CAS  Google Scholar 

  16. Joossens J, Ali OM, El-Sayed I, Surpateanu G, Van der Veken P, Lambeir A-M, Setyono-Han B, Foekens JA, Schneider A, Schmalix W, Haemers A, Augustyns K (2007) J Med Chem 50:6638

    Article  CAS  Google Scholar 

  17. Ma J-A (2006) Chem Soc Rev 35:630

    Article  CAS  Google Scholar 

  18. Smith AB, Yager KM, Taylor CM (1995) J Am Chem Soc 117:10879

    Article  CAS  Google Scholar 

  19. Amir M, Shahani S (1998) Indian J Heterocycl Chem 8:107

    CAS  Google Scholar 

  20. Ashour FAAM, Sara A (1990) Alexandria J Pharm Sci 4:29

    CAS  Google Scholar 

  21. El-Essawy FA, Boshta NM, Alotaibi MA, Elsayed MS, Tarabees R, Saleh EA (2016) Res Chem Intermed 42:8157

    Article  CAS  Google Scholar 

  22. El-Essawy FA, Boshta NM, El-Sawaf AK, Nassar AA, Khalafallah MS (2016) Chem Res Chin Univ 32:967

    Article  CAS  Google Scholar 

  23. Nassar OM (1997) Indian J Heterocycl Chem 7:105

    CAS  Google Scholar 

  24. Akhter M, Husain A, Azad B, Ajmal M (2009) Eur J Med Chem 44:2372

    Article  CAS  Google Scholar 

  25. Küçükgüzel G, Kocatepe A, De Clercq E, Sahin F, Güllüce M (2006) Eur J Med Chem 41:353

    Article  CAS  Google Scholar 

  26. Lewis D, Pennington DTM (2017) J Med Chem 60:3552

    Article  CAS  Google Scholar 

  27. Ambica KS, Taneja SC, Hundal MS, Kapoor KK (2008) Tetrahedron Lett 49:2208

    Article  CAS  Google Scholar 

  28. Azizi N, Saidi MR (2003) Tetrahedron 59:5329

    Article  CAS  Google Scholar 

  29. Bhagat S, Chakraborti A (2007) J Org Chem 72:1263

    Article  CAS  Google Scholar 

  30. Chandrasekhar S, Prakash SJ, Jagadeshwar V, Narsihmulu C (2001) Tetrahedron Lett 42:5561

    Article  CAS  Google Scholar 

  31. Ghosh R, Maiti S, Chakraborty A, Maiti DK (2004) J Mol Catal A Chem 210:53

    Article  CAS  Google Scholar 

  32. Heydari A, Hamadi H, Pourayoubi M (2007) Catal Commun 8:1224

    Article  CAS  Google Scholar 

  33. Heydari A, Khaksar S, Tajbakhsh M (2009) Tetrahedron Lett 50:77

    Article  CAS  Google Scholar 

  34. Kudrimoti S, Rao Bommena V (2005) Tetrahedron Lett 46:1209

    Article  CAS  Google Scholar 

  35. Hsueh PR, Teng LJ, Yang PC, Ho SW, Hsieh WC, Luh KT (1997) J Clin Microbiol 35:1021

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Clinical and Laboratory Standards Institute (2014) Performance standards for antimicrobial susceptibility testing; Twenty-Fourth informational supplement (M100-S24). Wayne, USA

    Google Scholar 

  37. Kim SW, Lee DG, Choi SM, Park C, Kwon JC, Kim SH, Park SH, Choi JH, Yoo JH, Shin WS (2010) Yonsei Med J 51:722

    Article  CAS  Google Scholar 

  38. He H, Xia H, Xia Q, Ren Y, He H (2017) Bioorg Med Chem 25:5652

    Article  CAS  Google Scholar 

  39. Garfunkle J, Ezzili C, Rayl TJ, Hochstatter DG, Hwang I, Boger DL (2008) J Med Chem 51:4392

    Article  CAS  Google Scholar 

  40. Sandoval E, Lafuente-Monasterio MJ, Almela MJ, Castañeda P, Jiménez Díaz MB, Martínez-Martínez MS, Vidal J, Angulo-Barturen Í, Bamborough P, Burrows J, Cammack N, Chaparro MJ, Coterón JM, de Cozar C, Crespo B, Díaz B, Drewes G, Fernández E, Ferrer-Bazaga S, Fraile MT, Gamo FJ, Ghidelli-Disse S, Gómez R, Haselden J, Huss S, León ML, de Mercado J, Macdonald SJF, Martín Hernando JI, Prats S, Puente M, Rodríguez A, de la Rosa JC, Rueda L, Selenski C, Willis P, Wilson DM, Witty M, Calderón F (2017) J Med Chem 60:6880

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader M. Boshta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2915 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boshta, N.M., Elgamal, E.A. & El-Sayed, I.E.T. Bioactive amide and α-aminophosphonate inhibitors for methicillin-resistant Staphylococcus aureus (MRSA). Monatsh Chem 149, 2349–2358 (2018). https://doi.org/10.1007/s00706-018-2303-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2303-y

Keywords

Navigation