Skip to main content
Log in

Evaluation of an ion source with a tubular nebulizer for microflow atmospheric pressure chemical ionization

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

An atmospheric pressure chemical ionization (APCI) source designed for microliter-per-minute flow rates (0.5–10.0 mm3/min) was constructed. A simple resistively heated 1/8 in. OD tube-based nebulizer, together with a corona-discharge electrode was positioned in front of the entrance capillary of a mass spectrometer. Working parameters of the ion source were optimized, and its performance was evaluated. The limit of detection for directly infused acridine was found to be lower for micro-APCI (10 fmol/s) than for conventional APCI (170 fmol/s), and the linear dynamic range was significantly wider for the micro-APCI source. The micro-APCI and conventional APCI sources provided similar, but not identical mass spectra. The micro-APCI source was used as a detector for high-performance liquid chromatography at 10 mm3/min; the limit of detection for acridine was 690 fmol, which was about ten times lower value than in conventional HPLC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gross JH (2004) Mass spectrometry, a textbook, 1st edn. Springer, Berlin

    Book  Google Scholar 

  2. Vrkoslav V, Háková M, Pecková K, Urbanová K, Cvačka J (2011) Anal Chem 83:2978

    Article  CAS  PubMed  Google Scholar 

  3. Vrkoslav V, Cvačka J (2012) J Chromatogr A 1259:244

    Article  CAS  PubMed  Google Scholar 

  4. Háková E, Vrkoslav V, Míková R, Schwarzová-Pecková K, Bosáková Z, Cvačka J (2015) Anal Bioanal Chem 407:5175

    Article  CAS  PubMed  Google Scholar 

  5. Kalužíková A, Vrkoslav V, Harazim E, Hoskovec M, Plavka R, Buděšínský M, Bosáková Z, Cvačka J (2017) J Lipid Res 58:1579

    Article  PubMed  PubMed Central  Google Scholar 

  6. Somogyi A (2008) Mass spectrometry instrumentation and techniques. In: Vékey K, Teleks A, Vertes A (eds) Medical applications of mass spectrometry. Elsevier, Amsterdam

    Google Scholar 

  7. Dams R, Huestis MA, Lambert WE, Murphy CM (2003) J Am Soc Mass Spectrom 14:1290

    Article  CAS  PubMed  Google Scholar 

  8. Cappiello A (2007) Advances in LC–MS instrumentation, vol 72. Elsevier, Amsterdam, p 67

    Google Scholar 

  9. Andrade JF, Shelley TJ, Wetzel CW, Webb RM, Gamez G, Ray JS, Hieftje MG (2008) Anal Chem 80:2646

    Article  CAS  PubMed  Google Scholar 

  10. Horning EC, Horning MG, Carroll DI, Dzidic I, Stillwell RN (1973) Anal Chem 45:936

    Article  CAS  Google Scholar 

  11. Mitchum RK, Moler GF, Korfmacher WA (1980) Anal Chem 52:2278

    Article  CAS  PubMed  Google Scholar 

  12. Luosujärvi L, Karikko MM, Haapala M, Saarela V, Huhtala S, Franssila S, Kostiainen R, Kotiaho T, Kauppila TJ (2008) Rapid Commun Mass Spectrom 22:425

    Article  CAS  PubMed  Google Scholar 

  13. Niessen W, Correa R (2017) Interpretation of MS–MS mass spectra of drugs and pesticides. Wiley, Hoboken

    Book  Google Scholar 

  14. Kolakowski BM, Grossert JS, Ramaley L (2004) J Am Soc Mass Spectrom 15:311

    Article  CAS  PubMed  Google Scholar 

  15. Niessen W (1999) Liquid chromatography: mass spectrometry, 2nd edn. Marcel Dekker Inc, New York

    Google Scholar 

  16. Novotny MV (2017) J Chromatogr A 1523:3

    Article  CAS  PubMed  Google Scholar 

  17. Östman P, Marttila SJ, Kotiaho T, Franssila S, Kostiainen R (2004) Anal Chem 76:6659

    Article  CAS  PubMed  Google Scholar 

  18. Takeda S, Tanaka Y, Yamane M, Siroma Z, Wakida S, Otsuka K, Terabe S (2001) J Chromatogr A 924:415

    Article  CAS  PubMed  Google Scholar 

  19. Tanaka Y, Otsuka K, Terabe S (2003) J Pharm Biomed Anal 30:1889

    Article  CAS  PubMed  Google Scholar 

  20. Nyholm LM, Sjöberg P, Markides KE (1996) J Chromatogr A 755:153

    Article  CAS  Google Scholar 

  21. Östman P, Jäntti S, Grigoras K, Saarela V, Ketola AR, Franssila S, Kotiaho T, Kostiainen R (2006) Lab Chip 6:948

    Article  PubMed  Google Scholar 

  22. Kim YH, Kim S (2010) J Am Soc Mass Spectrom 21:386

    Article  CAS  PubMed  Google Scholar 

  23. Takino M, Daishima S, Nakahara T (2003) J Chromatogr A 1011:67

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the Czech Science Foundation (16-01639S) and Charles University in Prague (Project SVV260440) is hereby acknowledged with appreciation. The authors wish to thank Dr. Jindřich Houžvička (Crytur Ltd.) for providing them with the corundum tube.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Cvačka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strmeň, T., Vrkoslav, V., Pačes, O. et al. Evaluation of an ion source with a tubular nebulizer for microflow atmospheric pressure chemical ionization. Monatsh Chem 149, 987–994 (2018). https://doi.org/10.1007/s00706-018-2172-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2172-4

Keywords

Navigation