Skip to main content
Log in

Eco-friendly preparation of a magnetic catalyst for glucose oxidation combining the properties of nanometal particles and specific enzyme

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A facile and environmentally friendly preparation of a magnetic catalyst for the aerobic oxidation of glucose, combining the properties of two different catalytically active components—gold nanoparticles and glucose oxidase, was developed. This catalyst was synthesized by simple assembly—by sequential deposition of two oppositely charged polymers (chitosan and alternant copolymer of maleic acid) onto the surface of magnetite particles, this outer layer of this interpolyelectrolyte coating contains nanometal and specific enzyme. The catalyst preparation is reproducible and low cost, which uses no toxic reagents, condensing agents, or solvents at all stages. All components of the catalyst are non-toxic; moreover, most of them are the parts of ecosystem. We carried out an effective aerobic oxidation of glucose to gluconic acid using this catalyst. The work offers a new perspective on the production of different hybrid magnetic catalysts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hermans S, Deffernez A, Devillers M (2011) Appl Catal A Gen 395:19

    Article  CAS  Google Scholar 

  2. Witornska I, Frajtak M, Karski S (2011) Appl Catal A Gen 401:73

    Article  CAS  Google Scholar 

  3. Besson M, Lahmer F, Gallezot P, Fuertes P, Fleche G (1995) J Catal 152:116

    Article  CAS  Google Scholar 

  4. Abbadi A, Van BH (1995) J Mol Catal A Chem 97:111

    Article  CAS  Google Scholar 

  5. Wenkin M, Touillaux R, Ruiz P, Delmon B, Devillers M (1996) Appl Catal A 148:181

    Article  CAS  Google Scholar 

  6. Prati L, Rossi M (1997) Stud Surf Sci Catal 110:509

    Article  CAS  Google Scholar 

  7. Biella S, Prati L, Rossi M (2002) J Catal 206:242

    Article  CAS  Google Scholar 

  8. Astruc D, Lu F, Aranzaes JR (2005) Angew Chem Int Ed 44:7852

    Article  CAS  Google Scholar 

  9. Comotti M, Pina CD, Matarrese R, Rossi M, Siani A (2005) Appl Catal A Gen 291:204

    Article  CAS  Google Scholar 

  10. Stratakis M, Garcia H (2012) Chem Rev 112:4469

    Article  CAS  PubMed  Google Scholar 

  11. Ishida T, Haruta M (2007) Angew Chem Int Ed 46:7154

    Article  CAS  Google Scholar 

  12. Tsukuda T, Tsunoyama H, Sakurai H (2011) Asian J 6:736

    Article  CAS  Google Scholar 

  13. Beltrame P, Comotti M, Pina CD, Rossi M (2006) Appl Catal A Gen 297:1

    Article  CAS  Google Scholar 

  14. Samoilova NA, Krayukhina MA, Klimova TP, Babushkina TA, Vyshivannaya OV, Blagodatskikh IV, Yamskov IA (2014) Russ Chem Bull Int Ed 63:1009

    Article  CAS  Google Scholar 

  15. Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T (2007) J Phys Chem 111:4596

    CAS  Google Scholar 

  16. Ishida T, Watanabe H, Bebeko T, Akita T, Haruta M (2010) Appl Catal A Gen 377:42

    Article  CAS  Google Scholar 

  17. Saliger R, Decker N, Prube U (2011) Appl Catal B Environ 102:584

    Article  CAS  Google Scholar 

  18. Delidovich IV, Moroz BL, Taran OP, Gromov NV, Pyrjaev PA, Prosvirin IP, Bukhtiyarov VI, Parmon VN (2013) Chem Eng J 223:921

    Article  CAS  Google Scholar 

  19. Bujak P, Bartczak P, Polanski J (2012) J Catal 295:15

    Article  CAS  Google Scholar 

  20. Prube U, Herrmann M, Baatz C, Decker N (2011) Appl Catal A Gen 406:89

    Article  CAS  Google Scholar 

  21. Zhang H, Toshima N (2011) Appl Catal A Gen 400:13

    Google Scholar 

  22. Laurent S, Forge D, Port M, Roch A, Robic C, Vander EL, Muller RN (2008) Chem Rev 108:2064

    Article  CAS  PubMed  Google Scholar 

  23. Wang M, Thanou M (2010) Pharmacol Res 62:90

    Article  CAS  PubMed  Google Scholar 

  24. Peng S, Cheng K, Sun S (2009) Chem Soc Rev 38:2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li P, O’Mahony JJ, Lee GU (2016) Biotechnol Bioeng 113:11

    Article  CAS  PubMed  Google Scholar 

  26. Borlido L, Azevedo AM, Roque ACA, Aires-Barros MR (2013) Biotechnol Adv 31:1374

    Article  CAS  PubMed  Google Scholar 

  27. Maurya MR, Kumar A, Pessoa JC (2011) Coord Chem Rev 255:2315

    Article  CAS  Google Scholar 

  28. Dhakshinamoorthy A, Alvaro M, Garcia H (2011) Catal Sci Technol 1:856

    Article  CAS  Google Scholar 

  29. Yin Q, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Luo Z, Hardcastle KI, Hill CL (2010) Science 328:342

    Article  CAS  PubMed  Google Scholar 

  30. Ali ME, Rahman MM, Sarkar SM, Hamid SBA (2014) J Nanomater 192038

  31. Rossi LM, Quach AD, Rosenzweig Z (2004) Anal Bioanal Chem 380:606

    Article  CAS  PubMed  Google Scholar 

  32. Devasenathipathy R, Mani V, Chen S-M, Chen S-T, Huang S-T, Huang T-T, Lin C-M, Hwa K-Y, Chen T-Y, Chen B-J (2015) Enzym Microb Technol 78:40

    Article  CAS  Google Scholar 

  33. German N, Ramanaviciene A, Voronovic J, Ramanavicius A (2010) Microchim Acta 168:221

    Article  CAS  Google Scholar 

  34. Wu B, Hou S, Miao Z, Zhang C, Ji Y (2015) Nanomaterials 5:1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang W, Wang J, Zhao S, Sun Y, Sun C (2006) Electrochem Commun 8:665

    Article  CAS  Google Scholar 

  36. Li Z, Divakara SG, Richards RM (2010) In: Geckeler KE, Nishida H (eds) Advanced nanomaterials. Wiley VCH, Weinheim, p 333

  37. Haruta M (2004) Gold Bull 37:27

    Article  CAS  Google Scholar 

  38. Tamer U, Gündoğdu Y, Boyacı İH, Pekmez K (2010) J Nanopart Res 12:1187

    Article  CAS  Google Scholar 

  39. Seino S, Kinoshita T, Otome Y, Nakagawa T, Okitsu K, Mizukoshi Y, Nakayama T, Sekino T, Niihara K, Yamamoto TA (2005) J Magn Magn Mater 293:144

    Article  CAS  Google Scholar 

  40. Jeong J, Ha TH, Chung BH (2006) Anal Chim Acta 569:203

    Article  CAS  Google Scholar 

  41. Shimomura M, Kikuchi H, Yamauchi T, Miyauchi S (1996) Pure Appl Chem A33:1687

    CAS  Google Scholar 

  42. Abbasi M, Amiri R, Bordbar A-K, Ranjbakhsh E, Khosropour A-R (2016) Appl Surf Sci 364:752

    Article  CAS  Google Scholar 

  43. Samoilova N, Tikhonov V, Krayukhina M, Yamskov I (2014) J Appl Polym Sci 131:39663

    Article  CAS  Google Scholar 

  44. Samoilova NA, Krayukhina MA, Yamskov IA (2010) Interpolyelectrolyte complexes of chitosan. Nova, New York

    Google Scholar 

  45. Krayukhina MA, Samoilova NA, Erofeev AS, Yamskov IA (2010) Polym Sci A 52:243

    Article  Google Scholar 

  46. Berry CC (2009) J Phys D Appl Phys 42:224003-1

    Article  CAS  Google Scholar 

  47. Hajipour AR, Rezaei F, Khorsandi Z (2017) Green Chem 19:1353

    Article  CAS  Google Scholar 

  48. Wu Y, Guo J, Yang W, Wang C, Fu S (2006) Polymer 47:5287

    Article  CAS  Google Scholar 

  49. Zhu A, Luo X, Dai S (2009) J Mater Res 24:2307

    Article  CAS  Google Scholar 

  50. Samoilova NA, Krayukhina MA, Yamskov IA (2002) Russ J Phys Chem A 76:1502

    Google Scholar 

  51. Eskandari K, Zarei H, Ghourchian Y, Amoozadeh S-M (2015) J Anal Chem 70:1254

    Article  CAS  Google Scholar 

  52. Netto C, Toma HE, Andrade LH (2013) J Mol Catal B Enzym 85–86:71

    Article  CAS  Google Scholar 

  53. Zhu JJ, Figueiredo JL, Faria JL (2008) Catal Commun 9:2395

    Article  CAS  Google Scholar 

  54. Beamson G, Briggs D (1992) High resolution XPS of organic polymers. The Scientia ESCA300 Database. Wiley, Chichester

  55. Naumkin AV, Vasil’kov AYu, Podshibikhin VL, Volkov IO, Suzdalev IP, Maksimov YuV, Novichikhin SV, Matveev VV, Imshennik VK (2011) Russ J Phys Chem A 85:636

  56. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Surf Interface Anal 36:1564

    Article  CAS  Google Scholar 

  57. Biesinger MC, Payne BP, Grosvenor AP, Lau LW, Gerson AR (2011) RSC Smart Appl Surf Sci 257:2717

    Article  CAS  Google Scholar 

  58. Elmore WC (1938) Phys Rev 54:309

    Article  CAS  Google Scholar 

  59. Bergmeyer HU, Gawehn K, Grassl M (1974) In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol I, 2nd edn. Academic Press, New York, p 457

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. T. P. Klimova for help with NMR, Prof. V. I. Lozinsky for help with microscopy, and Dr. K. Maslakov for help with XPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda Samoilova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3938 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilova, N., Krayukhina, M., Naumkin, A. et al. Eco-friendly preparation of a magnetic catalyst for glucose oxidation combining the properties of nanometal particles and specific enzyme. Monatsh Chem 149, 1179–1188 (2018). https://doi.org/10.1007/s00706-018-2156-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2156-4

Keywords

Navigation