Skip to main content
Log in

An extension of the Fries rule to non-benzenoid hydrocarbons having four-atomic rings

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The study contains a deductive search for the principal monocyclic substructures determining different importances (weights) of separate Kekulè valence structures of phenylenes and their congeners. Individual Kekulè structures are modelled as continuous conjugated systems consisting of uniform double (C=C) bonds connected by uniform single (C–C) bonds, the latter being substantially weaker as compared to the former. The relevant total \(\pi\)-electron energies are shown to offer an adequate criterion for ordering of the structures concerned according to their weights. These energies, in turn, are derived in the form of power series with respect to the small resonance parameter of C–C bonds. Analysis of expressions for separate members of this series shows that the cyclobutadienoid rings (if any) are the most important destabilizing contributors to the energy of the given structure, whereas the benzenoid rings and cycles like 3,4-dimethylene cyclobutene take the second place (their increments are stabilizing and destabilizing, respectively). Additivity and transferability of the above-enumerated contributions to energies of Kekulè valence structures also are among the conclusions. These results provide us with an extension of the classical Fries rule to non-benzenoid hydrocarbons having four-atomic rings. Specific examples of the given class of compounds are considered in a detail, viz. biphenylene, [3]phenylene, as well as benzo- and naphthocyclobutenes. The relation of the approach applied to the theory of conjugated circuits also is discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cyvin SJ, Gutman I (1988) Kekulè structures of benzenoid hydrocarbons. Springer, Berlin

    Book  Google Scholar 

  2. Randić M, Plavsić D, Trinajstić N (1991) Struct Chem 2:543

    Article  Google Scholar 

  3. Randić M (2003) Chem Rev 103:3449

    Article  CAS  PubMed  Google Scholar 

  4. Herndon WC (1974) J Chem Educ 51:10

    Article  CAS  Google Scholar 

  5. Cooper D (2002) Valence bond theory. Elsevier, Amsterdam

    Google Scholar 

  6. Klein DJ, Trinajstić N (1990) Valence bond theory and chemical structure. Elsevier, Amsterdam

    Google Scholar 

  7. Rogers KM, Fowler PW (2001) J Chem Soc Perkin Trans 2:18

    Article  Google Scholar 

  8. Ciesielski A, Krygowski TM, Cyranski MK (2010) Symmetry 2:1390

    Article  CAS  Google Scholar 

  9. Randić M (2004) J Chem Inf Comput Sci 44:365

    Article  CAS  PubMed  Google Scholar 

  10. Fries K (1927) J Liebig Ann Chem 454:121

    Article  CAS  Google Scholar 

  11. Fries K, Walter R, Schilling K (1935) J Liebig Ann Chem 516:248

    Article  CAS  Google Scholar 

  12. Randić M (1961) J Chem Phys 34:693

    Article  Google Scholar 

  13. Heiberg-Andersen H, Skjeltorp AT (2005) J Math Chem 38:589

    Article  CAS  Google Scholar 

  14. Sedlar J, Andelić I, Gutman I, Vukičević D, Graovać A (2006) Chem Phys Lett 427:418

    Article  CAS  Google Scholar 

  15. Dewar MJS, Longuet-Higgins HC (1952) Proc Roy Soc A 214:428

    Article  Google Scholar 

  16. Trinajstić N (1977) In: Segal GA (ed) Semiempirical methods of electronic structure calculations, Part A, Techniques. Plenum Press, New York

    Google Scholar 

  17. Klein DJ, Randić M (1987) J Comput Chem 8:516

    Article  CAS  Google Scholar 

  18. Graovać A, Gutman I, Randić M, Trinajstić N (1973) J Am Chem Soc 95:6267

    Article  Google Scholar 

  19. Graovać A, Gutman I, Randić M, Trinajstić N (1978) Coll Czech Chem Commun 43:1375

    Article  Google Scholar 

  20. El-Basil (1982) Int J Quant Chem 21:771

    Article  CAS  Google Scholar 

  21. El-Basil (1982) Int J Quant Chem 21:779

    Article  CAS  Google Scholar 

  22. El-Basil (1982) Int J Quant Chem 21:793

    Article  CAS  Google Scholar 

  23. Havenith RWA, Van Lenthe JH, Dijkstra F, Jenneskens LW (2001) J Phys Chem A 105:3838

    Article  CAS  Google Scholar 

  24. Krygowski TM, Anulewicz R, Kruszewski J (1983) Acta Crystallogr Sect B Struct Sci 39:732

    Article  Google Scholar 

  25. Krygowski TM, Cyranski M (1997) In: Hargittai M, Hargittai I (eds) Advances in molecular structure research. JAI Press, London

    Google Scholar 

  26. Ciesielski A, Krygowski TM, Cyranski M, Balaban A (2011) Phys Chem Chem Phys 13:3737

    Article  CAS  PubMed  Google Scholar 

  27. Clar E (1972) The aromatic sextet. Wiley & Sons, London

    Google Scholar 

  28. Sola M (2013) Forty years of Clar’s aromatic π-sextet rule. Front Chem. https://doi.org/10.3389/fchem.2013.00022

    Article  PubMed  PubMed Central  Google Scholar 

  29. Klein DJ, Trinajstić N (1989) Pure Appl Chem 61:2107

    Article  CAS  Google Scholar 

  30. Klein DJ (1990) J Chem Educ 67:633

    Article  CAS  Google Scholar 

  31. Gineityte V (2014) MATCH Commun Math Comput Chem 72:39

    CAS  Google Scholar 

  32. Gineityte V (2002) J Mol Struct (Theochem) 585:15

    Article  CAS  Google Scholar 

  33. Gineityte V (2013) Int J Chem Model 5:99

    CAS  Google Scholar 

  34. Gineityte V (2016) Monatsh Chem 147:1303

    Article  CAS  Google Scholar 

  35. Malrieu JP, Gicquel M, Fowler PW, Lepetit C, Heully JL, Chauvin R (2008) J Phys Chem A 112:13203

    Article  CAS  PubMed  Google Scholar 

  36. Vollhardt KPC, Mohler DL (1996) In: Halton B (ed) Advances in strain in organic chemistry, vol 5. JAI Press, London

    Google Scholar 

  37. Balaban AT, Vollhardt KPC (2011) Open Org Chem J 5(Suppl 1-M8):117

    Article  CAS  Google Scholar 

  38. Schulman JM, Disch RL (1993) J Am Chem Soc 115:11153

    Article  CAS  Google Scholar 

  39. Cava MP, Shirley RL, Erickson BW (1962) J Org Chem 27:755

    Article  CAS  Google Scholar 

  40. Crawford JL, Marshi RE (1973) Acta Crystallogr B 29:1238

    Article  CAS  Google Scholar 

  41. Cava MP, Deana AA, Muth K (1960) J Am Chem Soc 82:2524

    Article  CAS  Google Scholar 

  42. Lawrence JL, MacDonald SGG (1969) Acta Crystallogr B 25:978

    Article  CAS  Google Scholar 

  43. Gutman I, Ashrafi AR (2008) MATCH Commun Math Comput Chem 60:135

    CAS  Google Scholar 

  44. Furtula B, Gutman I (2008) Indian J Chem 47A:220

    CAS  Google Scholar 

  45. Coulson CA, O’Leary B, Mallion RB (1978) Hűckel theory for organic chemists. Academic Press, London

    Google Scholar 

  46. Yates K (1978) Hűckel molecular orbital theory. Academic Press, New York

    Book  Google Scholar 

  47. Gutman I (2005) Monatsh Chem 136:1055

    Article  CAS  Google Scholar 

  48. Fishtik I (2011) J Phys Org Chem 24:263

    Article  CAS  Google Scholar 

  49. Mitchell RH, Iyer VS (1996) J Am Chem Soc 118:2903

    Article  CAS  Google Scholar 

  50. Randić M (2011) Open Org Chem J 5(Suppl 1-M2):11

    Article  CAS  Google Scholar 

  51. Randić M, Balaban AT, Plavsić D (2011) Phys Chem Chem Phys 13:20644

    Article  CAS  PubMed  Google Scholar 

  52. Gineityte V (1999) J Mol Struct (Theochem) 487:231

    Article  CAS  Google Scholar 

  53. Gineityte V (2009) Z Naturforsch A 64:132

    Article  CAS  Google Scholar 

  54. Gineityte V (2012) Int J Chem Model 4:189

    CAS  Google Scholar 

  55. Gineityte V (2008) Int J Quant Chem 108:1141

    Article  CAS  Google Scholar 

  56. Gineityte V (2016) ArXiv:1602.07904 http://arxiv.org/abs/1602.07904

Download references

Acknowledgements

The author is grateful to his colleague Dr. Vaidas Juknevičius for his help with preparation of the figures of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktorija Gineityte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gineityte, V. An extension of the Fries rule to non-benzenoid hydrocarbons having four-atomic rings. Monatsh Chem 149, 1031–1044 (2018). https://doi.org/10.1007/s00706-017-2133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-2133-3

Keywords

Navigation