Skip to main content

Advertisement

Log in

On the solubility of whitlockite, Ca9Mg(HPO4)(PO4)6, in aqueous solution at 298.15 K

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Whitlockite was assigned the ideal formula Ca9Mg(HPO4)(PO4)6, but the synthesis of a solid phase with this exact composition is very difficult. One of the reasons arises from the fact that there are no accurate values published for its solubility constant and/or other thermodynamic parameters. These could help to delineate a stability field in relation to the most common solid calcium and magnesium phosphates which normally co-occur with whitlockite. Calcium magnesium phosphates with the structure of whitlockite containing various nMg/nCa ratios were synthesized from aqueous solution of pH between 5.0 and 6.0, with the ratio of the concentrations of magnesium and calcium between 0.4 and 1.5, and excess of total calcium and magnesium over total phosphate. Those solids were used to determine the solubility of whitlockite with the ideal formula [lg Ks(whitlockite, solid, 298.15 K) = − 113.75 ± 2.18], which was used to determine its standard molar Gibbs energy of formation. This value, together with the previously published values for the standard molar Gibbs energy of formation of the relevant calcium and magnesium solid phosphates and other species at equilibrium, allowed the construction of a phase diagram containing all the relevant solid calcium and magnesium phosphates.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Frondel C (1941) Am Min 26:145

    CAS  Google Scholar 

  2. Frondel C (1949) Am Min 34:692

    Google Scholar 

  3. Jang HL, Jin K, Lee J, Kim Y, Nahm SH, Hong KS, Nam KT (2014) ACS Nano 8:634

    Article  CAS  Google Scholar 

  4. Magalhães MCF, Marques PAAP, Correia RN (2006) Calcium and Magnesium phosphates: Normal and Pathological Mineralization. In: Königsberger E, Königsberger LC (eds) Biomineralization: medical aspects of solubility. Wiley, Chichester, p 71

    Chapter  Google Scholar 

  5. Lagier R, Baud CA (2003) Pathol Res Pract 199:329

    Article  CAS  Google Scholar 

  6. Sakae T, Yamamoto H, Mishima H, Matsumoto T, Kozawa Y (1989) Scanning Microsc 3:855

    CAS  Google Scholar 

  7. Verberckmoes S, Persy V, Behets G, Neven E, Hufkens A, Zebger-Gong H, Müller D, Haffner D, Querfeld U, Bothic S, De Broe M, D’Haese P (2007) Kidney Int 71:298

    Article  CAS  Google Scholar 

  8. Mohr W, Görz E (2001) Z Kardiol 90:916

    Article  CAS  Google Scholar 

  9. Scotchford CA, Vickers M, Ali SY (1995) Osteoarthr Cartil 3:79

    Article  CAS  Google Scholar 

  10. Scotchford CA, Ali SY (1995) Ann Rheum Dis 54:339

    Article  CAS  Google Scholar 

  11. Godinho MM (1970) Mem Not 69:97

    CAS  Google Scholar 

  12. Corlett M, Keppler U (1966) Naturwissenschaften 53:105

    Article  CAS  Google Scholar 

  13. Jaynes W, Moore P, Miller D (1999) J Environ Qual 28:530

    Article  CAS  Google Scholar 

  14. Marques PAAP (2003) Surface reactions of calcium phosphates ceramics in simulated plasmas. Unpublished PhD Thesis (in Portuguese), Universidade de Aveiro, Aveiro

  15. Danilchenko S, Protsenko I, Sukhodub L (2009) Cryst Res Technol 44:553

    Article  CAS  Google Scholar 

  16. Xiande X, Minitti ME, Ming C, Ho-Kwang M, Deqiang W, Jinfu S, Yingwei F (2002) Geochim Cosmochim Acta 66:2439

    Article  Google Scholar 

  17. Xiande X, Minitti ME, Ming C, Ho-Kwang M, Deqiang W, Jinfu S, Yingwei F (2003) Eur J Miner 15:1001

    Article  Google Scholar 

  18. LeGeros RZ (1991) Calcium Phosphates in Oral Biology and Medicine. Karger, Basel

    Google Scholar 

  19. Hamad M, Heughebaert JC (1986) J Cryst Growth 79:192

    Article  CAS  Google Scholar 

  20. Ferreira BJML, Magalhães MCF, Correia RN (2008) Mater Sci Forum 587–588:7

    Article  Google Scholar 

  21. Perrin DD, Sayce IG (1967) Talanta 14:833

    Article  CAS  Google Scholar 

  22. Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascal) pressure and at higher temperatures. U.S. Geological Survey bulletin 1452, pp 12, 14, 19, 20

  23. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) Journal of Physical and Chemical Reference Data 11, (Suppl 2), pp 64, 73, 76, 260, 267, 270

  24. Chughtai A, Marshall R, Nancollas GH (1968) J Phys Chem 72:208

    Article  CAS  Google Scholar 

  25. Truesdell AH, Jones BF (1974) J Res US Geol Surv 2:233

    CAS  Google Scholar 

  26. Smith RM, Martell AE (1976) Critical Stability Constants, vol 4. Plenum Press, New York, Inorganic complexes

    Book  Google Scholar 

  27. Taylor AW, Frazier AW, Gurney EL, Smith JP (1963) Trans Faraday Soc 59:1585

    Article  CAS  Google Scholar 

  28. Hesse A, Heimbach D (1999) World J Urol 17:308

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. D. Brynn Hibbert for the suggestions on data treatment and statistical analysis, and to the anonymous reviewer that made a careful editing of the text, whose suggestions allowed to improve it. We want to acknowledge also the help from Dr. Rosário Soares with the XRD spectra and analysis, and MSc. Celeste Azevedo with the thermogravimetric analysis and FT-IR spectra. The financial support from the Department of Chemistry and CICECO-Aveiro Institute of Materials POCI-01-0145-FEDER-007679 (FCT-UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Clara F. Magalhães.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magalhães, M.C.F., Costa, M.O.G. On the solubility of whitlockite, Ca9Mg(HPO4)(PO4)6, in aqueous solution at 298.15 K. Monatsh Chem 149, 253–260 (2018). https://doi.org/10.1007/s00706-017-2129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-2129-z

Keywords

Navigation