Skip to main content
Log in

Volumetric properties of binary mixtures containing chiral ionic liquids with a (−)-menthol substituent with acetonitrile at 298.15 K

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The intermolecular interactions and the influence of alkyl chain length have been investigated for three binary systems of 3-alkyl-1-[(1R,2S,5R)-(−)-menthoxymethyl]imidazolium bis(trifluoromethylsulfonyl)imide ionic liquid (alkyl = butyl, octyl, and dodecyl) with acetonitrile at 298.15 K by means of density measurements over the entire composition range. From the experimental values, the excess molar volumes and partial molar volumes were calculated and subsequently fitted using the Redlich–Kister equation. We have found that the excess molar volumes were negative for all three systems corresponding to a better arrangement of the molecules and/or stronger interactions. The parameters of the Redlich–Kister equation were optimized by means of a robust regression along a gnostic influence function. This made possible a deeper analysis of the experimental data. Partial molar volumes and excess molar volumes at infinite dilution using these parameters could then be calculated, allowing for a sound estimate of the solute–solvent interaction between the studied ionic liquids and acetonitrile.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kuzmina O, Hallett J (2016) Application, purification, and recovery of ionic liquids. Elsevier, Amsterdam

    Google Scholar 

  2. Hayes R, Warr GG, Atkin R (2015) Chem Rev 115:6357

    Article  CAS  Google Scholar 

  3. MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, Davis JH, Watanabe M, Simon P, Angell CA (2014) Energy Environ Sci 7:232

    Article  CAS  Google Scholar 

  4. Pereiro AB, Araujo JMM, Esperanca JMSS, Marrucho IM, Rebelo LPN (2012) J Chem Thermodyn 46:2

    Article  CAS  Google Scholar 

  5. de la Parra JC, Zambrano JR, Bermejo MD, Martin A, Segovia JJ, Cocero MJ (2015) J Chem Thermodyn 91:8

    Article  Google Scholar 

  6. Machanova K, Boisset A, Sedlakova Z, Anouti M, Bendova M, Jacquemin J (2012) J Chem Eng Data 57:2227

    Article  CAS  Google Scholar 

  7. Canongia Lopes JN, Costa Gomes MF, Husson P, Padua AAH, Rebelo LP, Sarraute S, Tariq M (2011) J Phys Chem B 115:6088

    Article  CAS  Google Scholar 

  8. Floris T, Kluson P, Bartek L, Pelantova H (2009) Appl Catal A 366:160

    Article  CAS  Google Scholar 

  9. Garcia-Miaja G, Troncoso J, Romani L (2009) J Chem Thermodyn 41:334

    Article  CAS  Google Scholar 

  10. Geppert-Rybczynska M, Sitarek M (2014) J Chem Eng Data 59:1213

    Article  CAS  Google Scholar 

  11. Borodin O, Henderson WA, Fox ET, Berman M, Gobet M, Greenbaum S (2013) J Phys Chem B 117:10581

    Article  CAS  Google Scholar 

  12. Pal A, Kumar B, Kang TS (2013) Fluid Phase Equilib 358:241

    Article  CAS  Google Scholar 

  13. Andresova A, Bendova M, Schwarz J, Wagner Z, Feder-Kubis J (2017) J Mol Liq 242:336

    Article  CAS  Google Scholar 

  14. Miao X, Feder-Kubis J, Fischmeister C, Pernak J, Dixneuf PH (2008) Tetrahedron 64:3687

    Article  CAS  Google Scholar 

  15. Feder-Kubis J, Bryjak J (2013) Acta Biochim Pol 60:741

    CAS  Google Scholar 

  16. Pernak J, Feder-Kubis J, Cieniecka-Rosłonkiewicz A, Fischmeister C, Griffin ST, Rogers RD (2007) New J Chem 31:879

    Article  CAS  Google Scholar 

  17. Najafabadi AT, Gyenge E (2014) Carbon 71:58

    Article  CAS  Google Scholar 

  18. Umebayashi Y, Jiang J-C, Lin K-H, Shan Y-L, Fujii K, Seki S, Ishiguro S-I, Lin SH, Chang H-C (2009) J Chem Phys 131:234502

    Article  Google Scholar 

  19. Liang M, Zhang X-X, Kaintz A, Ernsting NP, Maroncelli M (2014) J Phys Chem B 118:1340

    Article  CAS  Google Scholar 

  20. Zheng Y-Z, Wang N-N, Luo J-J, Zhou Y, Yu Z-W (2013) Phys Chem Chem Phys 15:18055

    Article  CAS  Google Scholar 

  21. Bester-Rogac M, Stoppa A, Buchner R (2014) J Phys Chem B 118:1426

    Article  CAS  Google Scholar 

  22. Wang J, Tian Y, Zhao Y, Zhuo K (2003) Green Chem 5:618

    Article  CAS  Google Scholar 

  23. Wang J, Song H, Yang X, Zou W, Chen Y, Duan S, Sun J (2016) Korean J Chem Eng 33:2460

    Article  CAS  Google Scholar 

  24. Wu J-Y, Chen Y-P, Su C-S (2015) J Solut Chem 44:395

    Article  CAS  Google Scholar 

  25. Singh S, Bahadur I, Redhi GG, Ramjugernath D, Ebenso EE (2014) J Mol Liq 200:160

    Article  CAS  Google Scholar 

  26. Zafarani-Moattar MT, Shekaari H (2005) J Chem Eng Data 50:1694

    Article  CAS  Google Scholar 

  27. Prausnitz JM, Lichtenthaler RN, de Azevedo EG (1998) Molecular thermodynamics of fluid-phase equilibria, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  28. Moravkova L, Wagner Z, Linek J (2009) J Chem Thermodyn 41:591

    Article  CAS  Google Scholar 

  29. Dragoescu D, Gheorghe D, Bendova M, Wagner Z (2015) Fluid Phase Equilib 385:105

    Article  CAS  Google Scholar 

  30. Dragoescu D, Bendova M, Wagner Z, Gheorghe D (2016) J Mol Liq 223:790

    Article  CAS  Google Scholar 

  31. Riddick JA, Bunger WB, Sakano TK (1986) Organic solvents, 4th edn. Wiley, New York

    Google Scholar 

  32. Kovanic P, Humber MB (2015) The economics of information—mathematical gnostics for data analysis. http://www.math-gnostics.eu/books/. Accessed 28 July 2017

  33. Heiberger RM, Becker RA (1992) J Comput Gr Stat 1:181

    Google Scholar 

  34. Kovanic P (1986) Automatica 22:657

    Article  Google Scholar 

  35. Kovanic P (1974) Kybernetika 10:303

    Google Scholar 

  36. Aliotta F, Ponterio RC, Saija F, Salvato G, Triolo A (2007) J Phys Chem B 111:10202

    Article  CAS  Google Scholar 

  37. Dohnal V, Řehák K (2011) J Chem Eng Data 56:3047

    Article  CAS  Google Scholar 

  38. Sibyia PN, Deenadayalu N (2009) S Afr J Chem 62:20

    Google Scholar 

Download references

Acknowledgements

JFK wishes to acknowledge the financing by a statutory activity subsidy from the Polish Ministry of Science and Higher Education for the Faculty of Chemistry of Wrocław University of Science and Technology. MB and JFK wish to acknowledge the financial support by the Czech–Polish joint research project, Co-operation in the Field of Science and Technology “Mobility project” 2014–2015 and more specifically the Ministry of Education, Youth and Sports of the Czech Republic under Grant no. 7AMB14PL005 as well as the EU COST Action CM1206 Exchange on Ionic Liquids for having provided the authors with a discussion platform on ionic liquid properties. MB and PH would like acknowledge the support of the CNRS and CAS of an interacademic exchange in the bilateral Project no. 25810 (CNRS) or F-13-14-03 (CAS) that enabled them to collaborate on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Bendová.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andresová, A., Feder-Kubis, J., Wagner, Z. et al. Volumetric properties of binary mixtures containing chiral ionic liquids with a (−)-menthol substituent with acetonitrile at 298.15 K. Monatsh Chem 149, 445–451 (2018). https://doi.org/10.1007/s00706-017-2121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-2121-7

Keywords

Navigation