Skip to main content
Log in

Gas solubilities in liquid water near the temperature of the density maximum, T max(H2O) = 277.13 K

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Liquid water has a density maximum at T max(H2O) = 277.13 K, and around this temperature the structure of the liquid changes significantly. In order to investigate the impact of such an unusual solvent density behavior upon the temperature dependence of Henry fugacities \(h_{2,1} \left( {T,P} \right)\) (also known as Henry’s law constants) and related quantities of aqueous solutions of gases, that is, in particular, in order to solve the question of the existence of a point of inflection in curves \(h_{2,1} \left( T \right)\) vs. T near T max(H2O), we use results of high-precision gas solubility measurements in water of He, Ne, Ar, N2, and O2, where \(h_{2,1} \left( T \right)\) data have been reported for reasonably large and reasonably fine temperature grids around T max(H2O). Focusing on the temperature region \(273.15 < {T \mathord{\left/ {\vphantom {T {{\text{K}} < 285}}} \right. \kern-0pt} {{\text{K}} < 285}}.15\), the discussion is essentially based on analysing difference quotient plots \({{\Delta \left( {\ln h_{2,1} } \right)} \mathord{\left/ {\vphantom {{\Delta \left( {\ln h_{2,1} } \right)} {\Delta \left( {{1 \mathord{\left/ {\vphantom {1 T}} \right. \kern-0pt} T}} \right)}}} \right. \kern-0pt} {\Delta \left( {{1 \mathord{\left/ {\vphantom {1 T}} \right. \kern-0pt} T}} \right)}}\) vs. \(T_{\text{avg}}\). These plots summarize solubility results obtained at adjacent temperatures \(T_{i}\) and \(T_{i + 1}\), with \(T_{\text{avg}} = {{\left( {T_{i} + T_{i + 1} } \right)} \mathord{\left/ {\vphantom {{\left( {T_{i} + T_{i + 1} } \right)} 2}} \right. \kern-0pt} 2}\) being the average temperature, and are closely related to plots of \(\Delta H_{2}^{\infty } \left( {T_{\text{avg}} } \right)\) vs. \(T_{\text{avg}}\), with \(\Delta H_{2}^{\infty }\) being the partial molar enthalpy change on solution of the gas in water. The question is essentially resolved through including in the discussion insight gained from calorimetrically determined enthalpies of solution, i.e., through use of high-precision results obtained from flow-calorimeters originally designed by Gill and Wadsö in 1982 and 1984, respectively. Careful analysis of experimental results accumulated so far on the temperature dependence of the Henry fugacity around T max(H2O) and on corresponding enthalpies of solution do not support any unusual behavior of \(h_{2,1}\) in this temperature region.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wilhelm E, Battino R (2017) In: Wilhelm E, Letcher TM (eds) Enthalpy and internal energy: liquids, solutions and vapours. The Royal Society of Chemistry/IACT, Cambridge

    Chapter  Google Scholar 

  2. Mohr PJ, Newell DB, Taylor BN (2016) Rev Mod Phys 88:035009

    Article  Google Scholar 

  3. Wilhelm E, Battino R (2010) In: Wilhelm E, Letcher TM (eds) Heat capacities: liquids, solutions and vapours. The Royal Society of Chemistry/IUPAC and IACT, Cambridge, p 457

    Chapter  Google Scholar 

  4. Wilhelm E (1985) CRC Crit Rev Anal Chem 16:129

    Article  CAS  Google Scholar 

  5. Wilhelm E (2005) In: Weir AD, de Loos ThW (eds) Experimental thermodynamics, vol VII: measurement of the thermodynamic properties of multiple phases. Elsevier/IUPAC, Amsterdam, p 137

    Chapter  Google Scholar 

  6. Wilhelm E (2015) J Solut Chem 44:1004

    Article  CAS  Google Scholar 

  7. Wilhelm E, Battino R (1973) Chem Rev 73:1

    Article  CAS  Google Scholar 

  8. Wilhelm E, Battino R, Wilcock RJ (1977) Chem Rev 77:219

    Article  CAS  Google Scholar 

  9. Wilhelm E, Battino R (1972) J Chem Phys 56:563

    Article  CAS  Google Scholar 

  10. Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes, 2nd edn. Wiley, New York

    Google Scholar 

  11. Ben-Naim A (1974) Water and aqueous solutions. Plenum Press, New York

    Book  Google Scholar 

  12. Ben-Naim A (1980) Hydrophobic interactions. Plenum Press, New York

    Book  Google Scholar 

  13. Paschek D, Ludwig R, Holzmann J (2010) In: Wilhelm E, Letcher TM (eds) Heat capacities: liquids, solutions and vapours. The Royal Society of Chemistry/IUPAC and IACT, Cambridge, p 436

    Chapter  Google Scholar 

  14. De Jong PHK, Wilson JE, Neilson GW, Buckingham AD (1997) Mol Phys 91:99

    Article  Google Scholar 

  15. Botti A, Bruni F, Isopo A, Modesti G, Oliva C, Ricci MA (2003) J Chem Phys 118:235

    Article  CAS  Google Scholar 

  16. Buchanan P, Aldiwan N, Soper AK, Creek J, Koh CA (2005) Chem Phys Lett 415:89

    Article  CAS  Google Scholar 

  17. Laage D, Stirnemann G, Hynes JT (2009) J Phys Chem B 113:2428

    Article  CAS  Google Scholar 

  18. Prausnitz JM, Lichtenthaler RN, de Azevedo EG (1999) Molecular thermodynamics of fluid phase equilibria, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  19. Reiss H, Frisch HL, Helfand E, Lebowitz JL (1960) J Chem Phys 32:119

    Article  CAS  Google Scholar 

  20. Pierotti RA (1963) J Phys Chem 67:1840

    Article  CAS  Google Scholar 

  21. Pierotti RA (1965) J Phys Chem 69:281

    Article  CAS  Google Scholar 

  22. Reiss H (1965) Adv Chem Phys 9:1

    Google Scholar 

  23. Ben-Naim A, Friedman HL (1967) J Phys Chem 71:448

    Article  CAS  Google Scholar 

  24. Pierotti RA (1967) J Phys Chem 71:2366

    Article  CAS  Google Scholar 

  25. Wilhelm E, Battino R (1971) J Chem Thermodyn 3:379

    Article  CAS  Google Scholar 

  26. Stillinger FH (1973) J Solut Chem 2:141

    Article  CAS  Google Scholar 

  27. Pierotti RA (1976) Chem Rev 76:717

    Article  CAS  Google Scholar 

  28. Wilhelm E (1986) Fluid Phase Equil 27:233

    Article  CAS  Google Scholar 

  29. Wilhelm E, Battino R (1971) J Chem Phys 55:4012

    Article  CAS  Google Scholar 

  30. Wilhelm E (1973) J Chem Phys 58:3558

    Article  CAS  Google Scholar 

  31. Kell GS (1975) J Chem Eng Data 20:97

    Article  CAS  Google Scholar 

  32. Wagner W, Pruß A (2002) J Phys Chem Ref Data 31:387

    Article  CAS  Google Scholar 

  33. Tanaka M, Girard G, Davis R, Peuto A, Bignell N (2001) Metrologia 38:301

    Article  CAS  Google Scholar 

  34. Harvey AH, Span R, Fujii K, Tanaka M, Davis RS (2009) Metrologia 46:196

    Article  CAS  Google Scholar 

  35. Franks F (2000) Water: a matrix of life, 2nd edn. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  36. Kell GS (1967) J Chem Eng Data 12:66

    Article  CAS  Google Scholar 

  37. Hill PG, MacMillan RDC, Lee V (1982) J Phys Chem Ref Data 11:1

    Article  CAS  Google Scholar 

  38. The International Association for the Properties of Water and Steam (2005) Revised Release on the IAPS Formulation 1984 for the Thermodynamic Properties of Heavy Water Substance, IAPWS R3-84. The International Association for the Properties of Water and Steam, Santorini

    Google Scholar 

  39. Rettich TR, Battino R, Wilhelm E (1992) J Solut Chem 21:987

    Article  CAS  Google Scholar 

  40. Rettich TR, Battino R, Wilhelm E (1984) J Solut Chem 13:335

    Article  CAS  Google Scholar 

  41. Rettich TR, Battino R, Wilhelm E (2000) J Chem Thermodyn 32:1145

    Article  CAS  Google Scholar 

  42. Rettich TR, Battino R, Wilhelm E (1982) Ber Bunsenges Phys Chem 86:1128

    Article  CAS  Google Scholar 

  43. Rettich TR, Handa YP, Battino R, Wilhelm E (1981) J Phys Chem 85:3230

    Article  CAS  Google Scholar 

  44. Wilhelm E, Rettich TR, Battino R (2006) The solubility of propane in water: a high-precision study. THERMO International (16th STP, 19th ICCT, 61st CALCON), Boulder, CO, USA, July 30–August 4

  45. Wilhelm E, Rettich TR, Battino R (2008) The solubility of ethene in liquid water: a high-precision study. 20th ICCT, Warsaw, Poland, August 3–8

  46. Wilhelm E (2012) Netsu Sokutai 39:61

    CAS  Google Scholar 

  47. Krause D, Benson BB (1989) J Solut Chem 18:823

    Article  CAS  Google Scholar 

  48. Klots CE, Benson BB (1963) J Marine Res 21:48

    CAS  Google Scholar 

  49. Benson BB, Krause D, Peterson MA (1979) J Solut Chem 8:655

    Article  CAS  Google Scholar 

  50. Naghibi H, Dec SF, Gill SJ (1986) J Phys Chem 90:4621

    Article  CAS  Google Scholar 

  51. Naghibi H, Dec SF, Gill SJ (1987) J Phys Chem 91:245

    Article  CAS  Google Scholar 

  52. Naghibi H, Ownby DW, Gill SJ (1987) J Chem Eng Data 32:422

    Article  CAS  Google Scholar 

  53. Swain CG, Thornton ER (1962) J Am Chem Soc 84:822

    Article  CAS  Google Scholar 

  54. Kresheck GC, Schneider H, Scheraga HA (1965) J Phys Chem 69:3132

    Article  CAS  Google Scholar 

  55. Ben-Naim A (1965) J Chem Phys 42:1512

    Article  CAS  Google Scholar 

  56. Clarke ECW, Glew DN (1971) Can J Chem 49:691

    Article  CAS  Google Scholar 

  57. Ben-Naim A, Wilf J, Yaacobi M (1973) J Phys Chem 77:95

    Article  CAS  Google Scholar 

  58. Cosgrove BA, Walkley J (1981) J Chromatogr 216:161

    Article  CAS  Google Scholar 

  59. Crovetto R, Fernández Prini R, Japas ML (1982) J Chem Phys 76:1077

    Article  CAS  Google Scholar 

  60. Scharlin P, Battino R (1994) Fluid Phase Equil 94:137

    Article  Google Scholar 

  61. Clarke ECW, Glew DN (1966) Trans Faraday Soc 62:539

    Article  CAS  Google Scholar 

  62. Benson BB, Krause D (1976) J Chem Phys 64:689

    Article  CAS  Google Scholar 

  63. Wilhelm E (1997) Thermochim Acta 300:159

    Article  CAS  Google Scholar 

  64. Olofsson G, Oshodj AA, Qvarnström E, Wadsö I (1984) J Chem Thermodyn 16:1041

    Article  CAS  Google Scholar 

  65. Gill SJ, Wadsö I (1982) J Chem Thermodyn 14:905

    Article  CAS  Google Scholar 

  66. Klots CE, Benson BB (1963) J Phys Chem 67:933

    Article  CAS  Google Scholar 

  67. Dec SF, Gill SJ (1984) Rev Sci Instrum 55:765

    Article  CAS  Google Scholar 

  68. Biggerstaff DR, White DE, Wood RH (1985) J Phys Chem 89:4578

    Article  Google Scholar 

  69. Biggerstaff DR, Wood RH (1988) J Phys Chem 92:1994

    Article  CAS  Google Scholar 

  70. Hnĕdkovský L, Wood RH (1997) J Chem Thermodyn 29:731

    Article  Google Scholar 

  71. White DE, Wood RH, Biggerstaff DR (1988) J Chem Thermodyn 20:159

    Article  CAS  Google Scholar 

  72. Carter RW, Wood RH (1991) J Chem Thermodyn 23:1037

    Article  CAS  Google Scholar 

  73. Hnĕdkovský L, Majer V, Wood RH (1995) J Chem Thermodyn 27:801

    Article  Google Scholar 

  74. Franks F (1972–1982) Water: a comprehensive treatise, vols. I–VII. Plenum Press, New York

  75. Eisenberg D, Kauzmann W (2005) The structure and properties of water. Clarendon Press, Oxford

    Book  Google Scholar 

  76. Gleick PH (1993) Water in crisis: a guide to the world’s fresh water resources. Oxford University Press, New York

    Google Scholar 

  77. Hazen RM (2005) Genesis: the scientific quest for life’s origin. Joseph Henry Press, Washington DC

    Google Scholar 

  78. Ball P (2008) Chem Rev 108:74

    Article  CAS  Google Scholar 

  79. Ball P (2008) Chem Phys Chem 9:2677

    Article  CAS  Google Scholar 

  80. Wilhelm E, Battino R (2015) In: Wilhelm E, Letcher TM (eds) Volume properties: liquids, solutions and vapours. The Royal Society of Chemistry/IUPAC and IACT, Cambridge, p 273

    Google Scholar 

  81. Mittelstraß J (1998) In: Magerl G, Komarek K (eds) Virtualität und Realität, Bild und Wirklichkeit in den Naturwissenschaften. Böhlau, Wien

    Google Scholar 

  82. Wilhelm E (2015) In: Wilhelm E, Letcher TM (eds) Volume properties: liquids, solutions and vapours. The Royal Society of Chemistry/IUPAC and IACT, Cambridge, p 1

    Google Scholar 

Download references

Acknowledgements

We are honored to contribute this paper in memoriam to our colleague and friend Professor Heinz Gamsjäger. He was a long-term mainstay of, and contributor to, IUPAC’s Solubility Data Project. RB and EW would like to acknowledge the exceptional experimental skills of coauthor T. R. Rettich in carrying out the high-precision gas solubility measurements of our research group. This work was supported by a number of agencies including NIH, NSF, and PRF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rubin Battino or Emmerich Wilhelm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battino, R., Rettich, T.R. & Wilhelm, E. Gas solubilities in liquid water near the temperature of the density maximum, T max(H2O) = 277.13 K. Monatsh Chem 149, 219–230 (2018). https://doi.org/10.1007/s00706-017-2097-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-2097-3

Keywords

Navigation