Skip to main content

Advertisement

Log in

Thermodynamic response functions and Stokes-Einstein breakdown in superheated water under gigapascal pressure

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Liquid water is the most intriguing liquid in nature, both because of its importance to every known form of life, and its numerous anomalous properties, largely magnified under supercooled conditions. Among the anomalous properties of water is the seeming divergence of the thermodynamic response functions and dynamic properties below the homogenous nucleation temperature (~ 232 K). Furthermore, water exhibits an increasingly decoupling of the viscosity and diffusion, upon cooling, resulting in the breakdown of the Stokes-Einstein relationship (SER). At high temperatures and pressures, however, water behaves more like a “simple” liquid. Nonetheless, experiments at 400 K and GPa pressures (Bove et al. (2011) Phys. Rev. Lett., 111:185,901) showed that although the diffusion decreases monotonically with the pressure, opposite to pressurized supercooled water, a decoupling of the viscosity and diffusion, larger than that found in supercooled water at normal pressure, is observed. Here, we studied the validity of SER and different pressure-dependent thermodynamic response functions, known to exhibit an abnormal behavior upon cooling, including the density, isothermal compressibility, and the thermal expansion coefficient along the 400 K isotherm up to 3 GPa through molecular dynamics simulations. Seven different water models were investigated. A monotonic increase of the density (~ 50%) and decrease of the isothermal compressibility (~ 90%) and thermal expansion (~ 65%) is found. Our results also show that compressed hot water has various resemblances to cool water at normal pressure, with pressure inducing the formation of a new second coordination sphere and a monotonic decrease of the diffusion and viscosity coefficients. Whereas all water models provide a good account of the viscosity, the magnitude of the violation of the SER at high pressures (> ~ 1 GPa) is significantly smaller than that found through experiments. Thus, violation of the SER in simulations is comparable to that observed for liquid supercooled water, indicating possible limitations of the water models to account for the local structure and self-diffusion of superheated water above ~ 1 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Speedy RJ, Angell CA (1976) J Chem Phys 65:851. https://doi.org/10.1063/1.433153

    Article  CAS  Google Scholar 

  2. Debenedetti PG (2003) J Phys Condens Matter 15:R1669

    Article  CAS  Google Scholar 

  3. Gallo P, Amann-Winkel K, Angell CA et al (2016) Chem Rev 116:7463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Denbenedetti P, Stanley H (2003) Phys Today 56:40

    Article  Google Scholar 

  5. Stillinger FH (1980) Science 209:451

    Article  CAS  PubMed  Google Scholar 

  6. Lascaris E (2016) Phys Rev Lett 116:125701

    Article  PubMed  Google Scholar 

  7. Sastry S, Debenedetti PG, Sciortino F, Stanley HE (1996) Phys Rev E 53:6144

    Article  CAS  Google Scholar 

  8. Poole L (1881) Cat Orient Coins British Museum 10:1875

    Google Scholar 

  9. Li Y, Li J, Wang F (2013) Proc Natl Acad Sci 110:12209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Debenedetti PG, Sciortino F, Zerze GH (2020) Science 369:289

    Article  CAS  PubMed  Google Scholar 

  11. Palmer JC, Martelli F, Liu Y, Car R, Panagiotopoulos AZ, Debenedetti PG (2014) Nature 510:385

    Article  CAS  PubMed  Google Scholar 

  12. Liu L, Chen SH, Faraone A, Yen CW, Mou CY (2005) Phys Rev Lett 95(11):117802

    Article  PubMed  Google Scholar 

  13. Sellberg JA, Huang C, McQueen TA et al (2014) Nature 510:381

    Article  CAS  PubMed  Google Scholar 

  14. Kim KH, Späh A, Pathak H et al (2017) Science 358:1589

    Article  CAS  PubMed  Google Scholar 

  15. Starr FW, Sciortino F, Stanley HE (1999) Phys Rev E 60:6757

    Article  CAS  Google Scholar 

  16. Dehaoui A, Issenmann B, Caupin F (2015) Proc Natl Acad Sci 112:12020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Galamba N (2016) J Phys Condens Matter 29:015101

    Article  PubMed  Google Scholar 

  18. Chen S-H, Mallamace F, Mou C-Y et al (2006) Proc Natl Acad Sci 103:12974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Becker SR, Poole PH, Starr FW (2006) Phys Rev Lett 97:055901

    Article  PubMed  Google Scholar 

  20. Mazza MG, Giovambattista N, Stanley HE, Starr FW (2007) Phys Rev E 76:031203

    Article  Google Scholar 

  21. Kawasaki T, Kim K (2017) Sci Adv 3:e1700399

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dueby S, Dubey V, Daschakraborty S (2019) J Phys Chem B 123:7178

    Article  CAS  PubMed  Google Scholar 

  23. Dubey V, Erimban S, Indra S, Daschakraborty S (2019) J Phys Chem B 123:10089. https://doi.org/10.1021/acs.jpcb.9b08309

    Article  CAS  PubMed  Google Scholar 

  24. Kumar P, Buldyrev S, Becker S, Poole P, Starr F, Stanley H (2007) Proc Natl Acad Sci 104:9575

    Article  CAS  PubMed Central  Google Scholar 

  25. Dubey V, Kumar N, Daschakraborty S (2018) J Phys Chem B 122:7569. https://doi.org/10.1021/acs.jpcb.8b03177

    Article  CAS  PubMed  Google Scholar 

  26. Dubey V, Maiti A, Daschakraborty S (2020) Chem Phys Lett 755:137802

    Article  CAS  Google Scholar 

  27. Dueby S, Daschakraborty S (2022) Chem Phys Lett 806:140059

    Article  CAS  Google Scholar 

  28. Dueby S, Dubey V, Indra S, Daschakraborty S (2022) Phys Chem Chem Phys 24:18738. https://doi.org/10.1039/D2CP02664C

    Article  CAS  PubMed  Google Scholar 

  29. Dubey V, Dueby S, Erimban S, Daschakraborty S (2019) J Indian Chem Soc 96:741

    CAS  Google Scholar 

  30. Dubey V, Dueby S, Daschakraborty S (2021) Phys Chem Chem Phys 23:19964. https://doi.org/10.1039/D1CP02202D

    Article  CAS  PubMed  Google Scholar 

  31. Bove L, Klotz S, Strässle T, Koza M, Teixeira J, Saitta A (2013) Phys Rev Lett 111:185901

    Article  CAS  PubMed  Google Scholar 

  32. Holz M, Heil SR, Sacco A (2000) Phys Chem Chem Phys 2:4740. https://doi.org/10.1039/B005319H

    Article  CAS  Google Scholar 

  33. Kenneth TG, DC D, MJR H (1972) J Chem Phys 57(12):5117–5119

    Article  Google Scholar 

  34. Berendsen HJC, Grigera JR, Straatsma TP (1987) J Phys Chem 91:6269. https://doi.org/10.1021/j100308a038

    Article  CAS  Google Scholar 

  35. Wang L-P, Martinez TJ, Pande VS (2014) J Phys Chem Lett 5:1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mahoney MW, Jorgensen WL (2001) J Chem Phys 114:363

    Article  CAS  Google Scholar 

  37. Lamoureux G, Harder E, Vorobyov I, Roux B, MacKerell A (2006) Chem Phys Lett 418:245. https://doi.org/10.1016/j.cplett.2005.10.135

    Article  CAS  Google Scholar 

  38. Horn HW, Swope WC, Pitera JW et al (2004) J Chem Phys 120:9665. https://doi.org/10.1063/1.1683075

    Article  CAS  PubMed  Google Scholar 

  39. Abascal JLF, Vega C (2005) J Chem Phys 123:234505. https://doi.org/10.1063/1.2121687

    Article  CAS  PubMed  Google Scholar 

  40. Martínez L, Andrade R, Birgin E, Martínez J (2009) J Comput Chem 30:2157

    Article  PubMed  Google Scholar 

  41. Berendsen H, Hess B, Lindahl E, Van Der Spoel D, Mark A, Groenhof G (2005) J Comput Chem 26:1701

    Article  PubMed  Google Scholar 

  42. Euplb ML, Dtlhp LG (1995) J Chem Phys 103:8577

    Article  Google Scholar 

  43. Tinte S, Stachiotti M, Phillpot S, Sepliarsky M, Wolf D, Migoni R (2004) J Phys Condens Matter 16:3495

    Article  CAS  Google Scholar 

  44. Kassir Y, Kupiec M, Shalom A, Simchen G (1985) Curr Genet 9:253

    Article  CAS  PubMed  Google Scholar 

  45. Parrinello M, Rahman A (1981) J Appl Phys 52:7182. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  46. Daivis PJ, Evans DJ (1994) J Chem Phys 100:541

    Article  CAS  Google Scholar 

  47. Paul WB (1993) Adv Mater 5:223

    Article  Google Scholar 

  48. Chen T, Smit B, Bell AT (2009) J Chem Phys 131:246101. https://doi.org/10.1063/1.3274802

    Article  CAS  PubMed  Google Scholar 

  49. Haile JM (1992) Molecular dynamics simulation: elementary methods. Wiley, Heidelberg

    Google Scholar 

  50. Nosé S, Klein ML (1983) Mol Phys 50:1055. https://doi.org/10.1080/00268978300102851

    Article  Google Scholar 

  51. Heyes DM (1994) Phys Rev B 49:755. https://doi.org/10.1103/PhysRevB.49.755

    Article  CAS  Google Scholar 

  52. Galamba N, Nieto de Castro CA, Ely JF (2004) J Phys Chem B 108(11):3658–3662. https://doi.org/10.1021/jp036234x

    Article  CAS  Google Scholar 

  53. Allen MP, Tildesley DJ (2017) Computer simulation of liquids. Oxford University Press, Oxford

    Book  Google Scholar 

  54. Wiryana S, Slutsky LJ, Brown JM (1998) Earth Planet Sci Lett 163:123

    Article  CAS  Google Scholar 

  55. Abramson EH, Brown JM (2004) Geochim Cosmochim Acta 68:1827

    Article  CAS  Google Scholar 

  56. Abramson EH (2007) Phys Rev E 76:051203

    Article  Google Scholar 

  57. Kumar R, Schmidt JR, Skinner JL (2007) J Chem Phys 126:204107

    Article  CAS  PubMed  Google Scholar 

  58. Laage D, Hynes JT (2008) J Phys Chem B 112:14230

    Article  CAS  PubMed  Google Scholar 

  59. Laage D, Hynes JT (2006) Science 311:832

    Article  CAS  PubMed  Google Scholar 

  60. Luzar A (1996) Faraday Discuss 103:29

    Article  CAS  Google Scholar 

  61. Luzar A, Chandler D (1996) Phys Rev Lett 76:928

    Article  CAS  PubMed  Google Scholar 

  62. Martiniano HFMC, Galamba N (2013) J Phys Chem B 117:16188

    Article  CAS  PubMed  Google Scholar 

  63. Galamba N (2013) J Phys Chem B 117:589. https://doi.org/10.1021/jp309312q

    Article  CAS  PubMed  Google Scholar 

  64. Chau PL, Hardwick AJ (1998) Mol Phys 93:511. https://doi.org/10.1080/002689798169195

    Article  CAS  Google Scholar 

  65. Errington JR, Debenedetti PG (2001) Nature 409:318. https://doi.org/10.1038/3505302

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Prof. Pratim K. Chattaraj, Professor, IIT Kharagpur, who has been the source of inspiration for us. We respectfully acknowledge his seminal contribution in theoretical chemistry and celebrate his 65th birthday. Shivam, Archita, and Vikas acknowledge IIT Patna for their fellowships. N. G. acknowledges the work support by UIDB/04046/2020 and UIDP/04046/2020 centre grants from FCT, Portugal (to BioISI), by the Portuguese National Distributed Computing Infrastructure (http://www.incd.pt). S. D. acknowledges computational facility from IIT Patna.

Funding

This study was funded by FCT (CEEC/2018) (Portugal) and SERB Early Career Award (File No. ECR/2017/002335) (India).

Author information

Authors and Affiliations

Authors

Contributions

SD contributed to the methodology, analysis, and writing original draft. AM contributed to the analysis, and writing original draft, VD contributed to the methodology and analysis, NG contributed to the conceptualization, methodology, analysis, and writing original draft. SD contributed to the conceptualization, methodology, analysis, writing original draft, and supervision of the project.

Corresponding authors

Correspondence to Nuno Galamba or Snehasis Daschakraborty.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dueby, S., Maiti, A., Dubey, V. et al. Thermodynamic response functions and Stokes-Einstein breakdown in superheated water under gigapascal pressure. Theor Chem Acc 142, 44 (2023). https://doi.org/10.1007/s00214-023-02991-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02991-0

Keywords

Navigation