Skip to main content
Log in

Dissecting the role of dispersion on the quantum topology phase diagram of monosaccharide isomers

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Intermolecular and intramolecular weak interactions have been described extensively with dispersion corrections from an energetics perspective. However, insights gained from a wave function view are to a lesser extent. Using two approximate density functionals B3LYP and M06-2X, together with D3BJ, DCP, and NL dispersion corrections, we have systematically explored and established the quantum topology phase diagram (QTPD) of 58 monosaccharide isomers within the framework of quantum theory of atoms in molecules for the first time. We find that merely NL dispersion corrections have an impact on the QTPD where those dubious points are further benchmarked and ruled out by the CCSD method. In addition, we use the Poincaré–Hopf relation rather than the Euclidean geometry to quantify the dimensionality of a molecule. This quantum topological definition of geometry reveals that the most energetically stable monosaccharide C6H12O6 conformers are quantified as two-dimensional.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. London F (1930) Z Phys 63:245

    Article  CAS  Google Scholar 

  2. Kolar M, Kubar T, Hobza P (2011) J Phys Chem B 115:8038

    Article  CAS  Google Scholar 

  3. Riley KE, Hobza P (2011) Wiley Interdiscip Rev Comput Mol Sci 1:3

    Article  CAS  Google Scholar 

  4. Hohenstein EG, Sherrill CD (2012) Wiley Interdiscip Rev Comput Mol Sci 2:304

    Article  CAS  Google Scholar 

  5. Tkatchenko A, Rossi M, Blum V, Ireta J, Scheffler M (2011) Phys Rev Lett 106:118102

    Article  Google Scholar 

  6. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 3:1456

    Article  Google Scholar 

  7. Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13:6670

    Article  CAS  Google Scholar 

  8. Grimme S, Huenerbein R, Ehrlich S (2011) Chem Phys Chem 12:1258

    Article  CAS  Google Scholar 

  9. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  10. Zhao Y, Truhlar DG (2008) J Chem Theory Comput 4:1849

    Article  CAS  Google Scholar 

  11. Peverati R, Truhlar DG (2012) J Phys Chem Lett 3:117

    Article  CAS  Google Scholar 

  12. Peverati R, Truhlar DG (2012) Phys Chem Chem Phys 14:13171

    Article  CAS  Google Scholar 

  13. Peverati R, Truhlar DG (2012) Phys Chem Chem Phys 14:16187

    Article  CAS  Google Scholar 

  14. Lee K, Murray ED, Kong L, Lundqvist BI, Langreth DC (2010) Phys Rev B Condens Matter 82:81101

    Article  Google Scholar 

  15. Vydrov OA, Voorhis TV (2009) Phys Rev Lett 103:63004

    Article  Google Scholar 

  16. Vydrov OA, Voorhis TV (2010) J Chem Phys 133:244103

    Article  Google Scholar 

  17. Grimme S (2004) J Comput Chem 25:1463

    Article  CAS  Google Scholar 

  18. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  19. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  20. Becke AD, Johnson ER (2005) J Chem Phys 122:154104

    Article  Google Scholar 

  21. Johnson ER, Becke AD (2005) J Chem Phys 123:24101

    Article  Google Scholar 

  22. Becke AD, Johnson ER (2005) J Chem Phys 123:154101

    Article  Google Scholar 

  23. Johnson ER, Becke AD (2006) J Chem Phys 124:174104

    Article  Google Scholar 

  24. Becke AD, Johnson ER (2007) J Chem Phys 127:154108

    Article  Google Scholar 

  25. Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102:73005

    Article  Google Scholar 

  26. Steinmann SN, Corminboeuf C (2011) J Chem Theory Comput 7:3567

    Article  CAS  Google Scholar 

  27. Lilienfeld V, Tavernelli OA, Rothlisberger I, Sebastiani UD (2004) Phys Rev Lett 93:153004

    Article  Google Scholar 

  28. Tapavicza E, Lin IC, Lilienfeld OA, Tavernelli I, Coutinho-Neto MD, Rothlisberger U (2007) J Chem Theory Comput 3:1673

    Article  CAS  Google Scholar 

  29. Cascella M, Lin IC, Tavernelli I, Rothlisberger U (2009) J Chem Theory Comput 5:2930

    Article  CAS  Google Scholar 

  30. Karalti O, Su X, Saidi WA, Jordan KD (2014) Chem Phys Lett 591:133

    Article  CAS  Google Scholar 

  31. Sun YY, Kim YH, Lee K, Zhang SB (2008) J Chem Phys 129:154102

    Article  CAS  Google Scholar 

  32. Dilabio GA (2008) Chem Phys Lett 455:348

    Article  CAS  Google Scholar 

  33. Mackie ID, Dilabio GA (2008) J Phys Chem A 112:10968

    Article  CAS  Google Scholar 

  34. Johnson ER, Dilabio GA (2009) J Phys Chem C 113:5681

    Article  CAS  Google Scholar 

  35. Mackie ID, Dilabio GA (2010) Phys Chem Chem Phys 12:6092

    Article  CAS  Google Scholar 

  36. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  37. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  38. Torres E, Dilabio GA (2012) J Phys Chem Lett 3:1738

    Article  CAS  Google Scholar 

  39. Momany FA, Schnupf U, Willett JL, Bosma WB (2007) Struct Chem 18:611

    Article  CAS  Google Scholar 

  40. Schnupf U, Willett JL, Bosma WB, Momany FA (2007) Carbohydr Res 342:196

    Article  CAS  Google Scholar 

  41. Schnupf U, Willett JL, Bosma WB, Momany FA (2007) Carbohydr Res 342:2270

    Article  CAS  Google Scholar 

  42. Schnupf U, Willett JL, Bosma WB, Momany FA (2008) J Comput Chem 29:1103

    Article  CAS  Google Scholar 

  43. Schnupf U, Willett JL, Bosma WB, Momany FA (2009) Carbohydr Res 344:362

    Article  CAS  Google Scholar 

  44. Schnupf U, Willett JL, Momany F (2010) Carbohydr Res 345:503

    Article  CAS  Google Scholar 

  45. French AD, Johnson GP, Cramer CJ, Csonka GI (2012) Carbohydr Res 350:68

    Article  CAS  Google Scholar 

  46. Csonka GI, French AD, Johnson GP, Stortz CA (2009) J Chem Theory Comput 5:679

    Article  CAS  Google Scholar 

  47. Csonka GI, Kaminsky J (2011) J Chem Theory Comput 7:988

    Article  CAS  Google Scholar 

  48. Jenkins S, Restrepo AD, Yin DL, Kirk SR (2011) Phys Chem Chem Phys 13:11644

    Article  CAS  Google Scholar 

  49. Jenkins S, Rong CY, Kirk SR, Yin DL, Liu SB (2011) J Phys Chem A 115:12503

    Article  CAS  Google Scholar 

  50. Hujo W, Grimme S (2011) J Chem Theory Comput 7:3866

    Article  CAS  Google Scholar 

  51. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  52. Murray ED, Lee K, Langreth DC (2009) J Chem Theory Comput 5:2754

    Article  CAS  Google Scholar 

  53. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  54. Sameera WM, Pantazis DA (2012) J Chem Theory Comput 8:2630

    Article  CAS  Google Scholar 

  55. Grimme S (2003) J Chem Phys 118:9095

    Article  CAS  Google Scholar 

  56. Neese F(2012) ORCA—an ab initio, density functional and semiempirical program package, V 3.0.0. Max Planck Institute for Bioinorganic Chemistry, Muelheim/Ruhr, Germany

  57. Neese F (2012) Wiley Interdiscip Rev Comput Mol Sci 2:73

    Article  CAS  Google Scholar 

  58. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  CAS  Google Scholar 

  59. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  60. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukud R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi MR, Millam, NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts RE, Stratmann O, Yazyev AJ, Austin R, Cammi C, Pomelli JW, Ochterski R, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.01. Gaussian Inc., Wallingford

  61. Keith TA, Gristmill TK (2012) AIMAll (Version 11.08.23) software. Overland Park KS, USA

  62. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, DeFrees DJ, Pople JA, Gordon MS (1982) J Chem Phys 77:3654

    Article  CAS  Google Scholar 

  63. Kendall RA, Dunning JT, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  64. Neese F, Hansen A, Liakos DG (2009) J Chem Phys 131:064103

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Dingsheng He is in Hunan Normal University for allowing us to access the quantum code AIMAll for the present study. The authors are also grateful to the project, supported by the Natural Science Foundation of Zhejiang Province, P. R. China (LY15B030001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai Guo Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T.S., Zhong, A.G. Dissecting the role of dispersion on the quantum topology phase diagram of monosaccharide isomers. Monatsh Chem 148, 1269–1276 (2017). https://doi.org/10.1007/s00706-016-1869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-016-1869-5

Keywords

Navigation