Skip to main content
Log in

Mechanistic aspects of osmium(VIII) catalysed oxidation of l-glutamic acid by copper(III) periodate complex in an aqueous alkaline medium

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of l-glutamic acid (GLU) by diperiodatocuprate(III) (DPC) has been investigated in the presence of osmium(VIII) as homogeneous catalyst in alkaline medium at a constant ionic strength of 0.11 mol dm−3 spectrophotometrically. The reaction exhibits 1:4 stoichiometry ([GLU]:[DPC]). The order of the reaction with respect to [DPC] was unity, while the order with respect to [GLU] was less than unity over the concentration range studied. The rate was increased with an increase in [OH] and decreased with an increase in [IO4 ]. The order with respect to [Os(VIII)] was unity. The ionic strength and dielectic constant of the medium did not affect the rate significantly. The main product succinic acid was identified by spot tests, FT-IR, and LC–MS spectral studies. Based on the experimental results, the possible mechanism was proposed. The reaction constants involved in the different steps of the mechanism were evaluated. The activation parameters with respect to the slow step of the mechanism were computed and also thermodynamic quantities determined. Kinetic studies suggest that the active species of DPC and Os(VIII) are found to be [Cu(H2IO6 )(H2O)2] and [OsO4(OH)2]2−, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reddy KB, Sethuram B, Navaneeth Rao T (1984) Indian J Chem 23A:593

    CAS  Google Scholar 

  2. Kumar A, Vaishali P, Ramamurthy P (2000) Int J Chem Kinet 32:286

    Article  CAS  Google Scholar 

  3. Shettar RS, Nandibewoor ST (2005) J Mol Cat A Chem 234:137

    Article  CAS  Google Scholar 

  4. Sethuram B (2003) Some aspects of electron transfer reactions involving organic molecules. Allied publishers (P) Ltd, New Delhi, p 78, p 151

  5. Kitajima N, Moro-ka Y (1994) Chem Rev 94:737

    Article  CAS  Google Scholar 

  6. Pierre JL (2000) Chem Soc Rev 29:251

    Article  CAS  Google Scholar 

  7. Solomon EI, Chen P, Metz M, Lee SK, Palmer AE (2001) Angew Chem Int Ed 40:4570

    Article  CAS  Google Scholar 

  8. Peisach J, Alsen P, Bloomberg WE (1996) The biochemistry of copper. Academic press, New York, p 49

    Google Scholar 

  9. Harihar AL, Panari RG, Nandibewoor ST (1999) Oxid Commun 22:308

    CAS  Google Scholar 

  10. Das AK (2001) Coord Chem Rev 213:307

    Article  CAS  Google Scholar 

  11. Agarwal MC, Upadyay SK (1983) J Sci Ind Res 42:508

    Google Scholar 

  12. Veerasomaiah P, Reddy KB, Sethuram B, Navaneeth Rao T (1987) Indian J Chem 26A:402

    Google Scholar 

  13. Mohanty RK, Das M, Das AK (1997) Transit Met Chem 22:487

    Article  CAS  Google Scholar 

  14. Sharma K, Mehrotra RN (2008) Polyhedron 27:3425

    Article  CAS  Google Scholar 

  15. Puttaswamy, Shubha JP (2009) J Mol Catal A 310:24

  16. Fiegl F (1975) Spot tests in organic analysis. Elsevier, New York, p 195

    Google Scholar 

  17. Jeffery GH, Bassett J, Mendham J, Denney RC (1996) Vogel’s text book of quantitative chemical analysis, 5th edn. England, ELBS Longman, Essex, p 381

    Google Scholar 

  18. Das AK, Das M (1994) J Chem Soc Dalton Trans 589

  19. Lide DR (ed) (1992) CRC hand book of Chemistry and Physics, 73rd edn. CRC Press, London, p 8

    Google Scholar 

  20. Jagadeesh RV, Puttaswamy (2008) J Phys Org Chem 21:844

    Article  CAS  Google Scholar 

  21. Reddy KB, Sethuram B, Navaneeth Rao T (1987) Z Phys Chem 268:706

    CAS  Google Scholar 

  22. Bailar JC Jr, Emeleus HJ, Nyholm SR, Trotman-Dikenson AF (1975) Comprehensive inorganic chemistry, vol 2. Pergamon Press, Oxford, p 1456

    Google Scholar 

  23. Angadi MA, Tuwar SM (2010) J Solut Chem 39:165

    Article  CAS  Google Scholar 

  24. Kamble DL, Nandibewoor ST (1998) J Phys Org Chem 11:171

    Article  CAS  Google Scholar 

  25. Lister MW (1953) Can J Chem 31:638

    Article  CAS  Google Scholar 

  26. Cohen GL, Atkinson G (1964) Inorg Chem 3:1741

    Article  CAS  Google Scholar 

  27. Naik KM, Nandibewoor ST (2012) J Chem Sci 124:809

    Article  CAS  Google Scholar 

  28. Rangappa KS, Raghavendra MP, Mahadevappa DS, Channegouda D (1998) J Org Chem 63:531

    Article  CAS  Google Scholar 

  29. Lewis ES (1974) Investigation of rates and mechanism of reactions. In: Weissberger A (ed) Techniques of chemistry, vol 6. Wiley, New York, p 421

    Google Scholar 

  30. Farokhi SA, Nandibewoor ST (2003) Tetrahedron 59:7595

    Article  CAS  Google Scholar 

  31. Martinez M, Pitarque MA, Eldik RV (1996) J Soc Dalton Trans 2665

  32. Murthy CP, Sethuram B, Navaneethrao T (1981) Z Phys Chem 262:336

    CAS  Google Scholar 

  33. Jeffery GH, Bassett J, Mendham J, Denney RC (1966) Vogel’s textbook of quantitative chemical analysis, 5th edn. UK, ELBS Longman, Essex, p 455

    Google Scholar 

  34. Panigrahi GP, Misro PK (1978) Indian J Chem 16A:201

    CAS  Google Scholar 

  35. Saxena OC (1967) Microchem J 12:609

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (PAM) thanks Department of Science and Technology, New Delhi for the award of INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Nandibewoor.

Appendix

Appendix

According to Scheme 2:

$${\text{Rate}} = \frac{{ - {\text{d}}\left[ {\text{DPC}} \right]}}{{{\text{d}}t}} = k\left[ {\text{Complex}} \right]\left[ {\text{C}} \right],$$
$${\text{Rate}} = \frac{{kK_{1} K_{2} K_{3} \left[ {\text{DPC}} \right]\left[ {{\text{Os}}\left( {\text{VIII}} \right)} \right]\left[ {{\text{OH}}^{ - } } \right]\left[ {\text{GLU}} \right]}}{{\left[ {{\text{H}}_{ 3} {\text{IO}}_{6}^{2 - } } \right]}}.$$
(9)

Total concentration of DPC is given by

$$\left[ {\text{DPC}} \right]_{T} = \left[ {\text{DPC}} \right]_{f} + \left[ {{\text{Cu}}\left( {{\text{H}}_{ 3} {\text{IO}}_{ 6} } \right)} \right]^{2 - } + \left[ {{\text{Cu}}\left( {{\text{OH}}_{ 2} } \right)_{ 2} \left( {{\text{H}}_{ 2} {\text{IO}}_{ 6} } \right)} \right] + {\text{Complex}}\,{\text{C,}}$$

where T and f refer to total and free concentrations. Therefore,

$$\left[ {\text{DPC}} \right]_{T} = \left[ {\text{DPC}} \right]_{f} + K_{1} \left[ {\text{DPC}} \right]\left[ {{\text{OH}}^{ - } } \right] + \frac{{K_{1} K_{2} \left[ {{\text{OH}}^{ - } } \right]\left[ {\text{DPC}} \right]_{f} }}{{\left[ {{\text{H}}_{ 3} {\text{IO}}_{6}^{2 - } } \right]}} + \frac{{K_{1} K_{2} K_{3} \left[ {\text{GLU}} \right]\left[ {\text{DPC}} \right]_{f} \left[ {{\text{OH}}^{ - } } \right]}}{{\left[ {{\text{H}}_{ 3} {\text{IO}}_{6}^{2 - } } \right]}},$$
$$\left[ {\text{DPC}} \right]_{T} = \left[ {\text{DPC}} \right]_{f} \left\{ {1 + K_{1} \left[ {{\text{OH}}^{ - } } \right] + \frac{{K_{1} K_{2} \left[ {{\text{OH}}^{ - } } \right]}}{{\left[ {{\text{H}}_{ 3} {\text{IO}}_{6}^{2 - } } \right]}} + \frac{{K_{1} K_{2} K_{3} \left[ {\text{GLU}} \right]\left[ {{\text{OH}}^{ - } } \right]}}{{\left[ {{\text{H}}_{ 3} {\text{IO}}_{6}^{2 - } } \right]}}} \right\},$$
$$\left[ {\text{DPC}} \right]_{f} = \left\{ {\frac{{\left[ {{\text{H}}_{ 3} {\text{IO}}_{6}^{2 - } } \right]\left[ {\text{DPC}} \right]_{T} }}{{\left[ {{\text{H}}_{ 3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} \left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{H}}_{ 3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} K_{2} \left[ {{\text{OH}}^{ - } } \right] + K_{1} K_{2} K_{3} \left[ {\text{GLU}} \right]\left[ {{\text{OH}}^{ - } } \right]}}} \right\}.$$
(10)

Similarly

$$\left[ {\text{GLU}} \right]_{T} = \left[ {\text{GLU}} \right]_{f} + {\text{Complex C,}}$$
$$\left[ {\text{GLU}} \right]_{T} = \left[ {\text{GLU}} \right]_{f} \left\{ { 1+ K_{ 3} \left[ {{\text{Os}}\left( {\text{VIII}} \right)} \right]} \right\},$$

In view of low concentration of Os(VIII) used, the term K 3[Os(VIII)] can be neglected. Hence

$$\left[ {\text{GLU}} \right]_{T} = \left[ {\text{GLU}} \right]_{f} .$$
(11)

Similarly

$$\left[ {{\text{OH}}^{ - } } \right]_{T} = \left[ {{\text{OH}}^{ - } } \right]_{f} .$$
(12)

The concentration of Os(VIII) is given by

$$\left[ {{\text{Os}}\left( {\text{VIII}} \right)} \right]_{T} = \left[ {{\text{Os}}\left( {\text{VIII}} \right)} \right]_{f} + \left[ {\text{C}} \right],$$
$$\left[ {{\text{Os}}\left( {\text{VIII}} \right)} \right]_{T} = \left[ {{\text{Os}}\left( {\text{VIII}} \right)} \right]_{f} + K_{3} \left[ {{\text{Os}}\left( {\text{VIII}} \right)} \right]\left[ {\text{GLU}} \right]_{f} ,$$
$$[{\text{Os}}({\text{VIII}})]_{T} = \left[ {{\text{Os}}\left( {\text{VIII}} \right)} \right]_{f} + \left\{ {1 + K_{3} \left[ {\text{GLU}} \right]} \right\},$$
$$\left[ {{\text{Os}}\left( {\text{VIII}} \right)} \right]_{f} = \frac{{\left[ {{\text{Os}}\left( {\text{VIII}} \right)} \right]_{T} }}{{1 + K_{3} \left[ {\text{GLU}} \right]}}.$$
(13)

Substituting Eqs. (9), (10), (11), and (12) in Eq. (8), we get

$$\frac{{{\text{d}}\left[ {\text{DPC}} \right]}}{{{\text{d}}t}} = k_{\text{obs}} = \frac{{kK_{1} K_{2} K_{3} \left[ {\text{GLU}} \right]\left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{Os}}\left( {\text{VIII}} \right)} \right]}}{{\left[ {{\text{H}}_{ 3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} \left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{H}}_{ 3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} K_{2} \left[ {{\text{OH}}^{ - } } \right] + K_{1} K_{2} K_{3} \left[ {{\text{OH}}^{ - } } \right]\left[ {\text{GLU}} \right]}}.$$
(14)
$$k_{\text{obs}} = \frac{\text{Rate}}{{\left[ {\text{DPC}} \right]}} = \frac{{kK_{1} K_{2} K_{3} \left[ {\text{GLU}} \right]\left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{Os}}\left( {\text{VIII}} \right)} \right]}}{{\left[ {{\text{H}}_{ 3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} \left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{H}}_{ 3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} K_{2} \left[ {{\text{OH}}^{ - } } \right] + K_{1} K_{2} K_{3} \left[ {{\text{OH}}^{ - } } \right]\left[ {\text{GLU}} \right]}}.$$
(15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magdum, P.A., Hegde, M.S., Singh, B.B. et al. Mechanistic aspects of osmium(VIII) catalysed oxidation of l-glutamic acid by copper(III) periodate complex in an aqueous alkaline medium. Monatsh Chem 147, 1703–1712 (2016). https://doi.org/10.1007/s00706-016-1672-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-016-1672-3

Keywords

Navigation