Skip to main content
Log in

Surfactant/carbon nanofibers-modified electrode for the determination of vanillin

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Glassy carbon electrode (GCE) modified with carbon nanofibers (CNF) and surfactants has been tested for the determination of vanillin in Britton–Robinson buffer. Cationic cetylpyridium bromide (CPB), nonionic Triton X100, and anionic sodium dodecylsulfate surfactants under different concentrations have been tested as modifier of CNF/GCE. The best form of CVs and voltammetric characteristics of vanillin have been obtained on CPB (0.5 mmol dm−3)/CNF/GCE when the 1.4-fold increase of oxidation peak currents has been observed in comparison with CNF/GCE. The electrode has been characterized by scanning electron microscopy and electrochemical impedance spectroscopy. These data indicate that CPB/CNF coverage significantly increases the charge transfer (R ct = 0.24 ± 0.04 vs. 4.6 ± 0.1 kΩ for GCE). Mechanism of vanillin oxidation on CPB/CNF/GCE is suggested. The electrooxidation is diffusion-controlled irreversible process with participation of two electrons and two protons and formation of o-quinone. Differential pulse voltammetry has been used for the quantification of vanillin. The working conditions for the vanillin detection (pH 2.0, pulse parameters) have been found. The linear dynamic ranges of the vanillin determination are 0.50–75.0 and 75.0–750 μmol dm−3 with the limits of detection and quantification 0.14 and 0.46 μmol dm−3 of vanillin, respectively. The developed approach has been applied for the vanillin quantification in foodstuff (vanilla sugar, vanilla pods, and cream milk powder). The results obtained are in good agreement with the data of standard spectrophotometric method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Saint Denis M, Coughtrie MW, Guilland JC, Verges B, Lemesle M, Giroud M (1996) Presse Med 25:2043

  2. Yardım Y, Gülcan M, Şentürk Z (2013) Food Chem 141:1821

    Article  Google Scholar 

  3. Tai A, Sawano T, Yazama F, Ito H (2011) Biochim Biophys Acta—Gen Subjects 1810:170

  4. Ziyatdinova GK, Budnikov HC (2015) Russ Chem Rev 84:194

    Article  CAS  Google Scholar 

  5. Cavalheiro ÉTG, Brett CMA, Oliveira-Brett AM, Fatibello-Filho O (2012) Bioanal Rev 4:31

    Article  Google Scholar 

  6. Ziyatdinova G, Budnikov H (2015) Monatsh Chem 146:741

    Article  CAS  Google Scholar 

  7. Agűí L, Yáñez-Sedeño P, Pingarrón JM (2008) Anal Chim Acta 622:11

    Article  Google Scholar 

  8. Huang J, Liu Y, You T (2010) Anal Meth 2:202

    Article  Google Scholar 

  9. Fernández-Abedul MT, Costa-García A (2008) Anal Bioanal Chem 390:293

    Article  Google Scholar 

  10. Gooding JJ (2005) Electrochim Acta 50:3049

    Article  CAS  Google Scholar 

  11. Ziyatdinova G, Gainetdinova A, Morozov M, Budnikov H, Grazhulene S, Redkin A (2012) J Solid State Electrochem 16:127

    Article  CAS  Google Scholar 

  12. Vittal R, Gomathi H, Kim K-J (2006) Adv Colloid Interface Sci 119:55

    Article  CAS  Google Scholar 

  13. Ziyatdinova GK, Ziganshina ER, Budnikov HC (2012) J Anal Chem 67:869

    Article  CAS  Google Scholar 

  14. Deng P-H, Feng Y-L, Fei J-J (2011) J Electroanal Chem 661:367

    Article  CAS  Google Scholar 

  15. Chen S-M, Chzo W-Y (2006) J Electroanal Chem 587:226

    Article  CAS  Google Scholar 

  16. Lu Q, Hu C, Cui R, Hu S (2007) J Phys Chem B 111:9808

    Article  CAS  Google Scholar 

  17. Hu C, Hu S (2004) Electrochim Acta 49:405

    Article  CAS  Google Scholar 

  18. Ziyatdinova G, Ziganshina E, Budnikov H (2014) Electrochim Acta 145:209

    Article  CAS  Google Scholar 

  19. Dang X, Wei Y, Hu S (2004) Anal Sci 20:307

    Article  CAS  Google Scholar 

  20. Wang F, Fei J, Hu S (2004) Colloids Surf B 39:95

    Article  Google Scholar 

  21. Yin Z-Z, Li L, Zhou S-M, Cao H, Ren S-B, Chen G-Z (2015) J Solid State Electrochem 19:1551

    Article  CAS  Google Scholar 

  22. Ziyatdinova G, Aytuganova I, Nizamova A, Morozov M, Budnikov H (2011) Collect Czech Chem Commun 76:1619

    Article  CAS  Google Scholar 

  23. Galandová J, Ziyatdinova G, Labuda J (2008) Anal Sci 24:711

    Article  Google Scholar 

  24. Peng J, Hou C, Hu X (2012) Int J Electrochem Sci 7:1724

    CAS  Google Scholar 

  25. Nicholson RS, Shain I (1964) Anal Chem 36:706

    Article  CAS  Google Scholar 

  26. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  27. Scholz F (ed) (2002) Electroanalytical methods. Guide to experiments and applications. Springer, Berlin Heidelberg

    Google Scholar 

  28. Zheng DY, Hu CG, Gan T, Dang XP, Hu SS (2010) Sens Actuators, B 148:247

    Article  CAS  Google Scholar 

  29. Huang L, Hou K, Jia X, Pan H, Du M (2014) Mater Sci Eng, C 38:39

    Article  CAS  Google Scholar 

  30. Agüí L, López-Guzmán JE, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (1999) Anal Chim Acta 385:241

    Article  Google Scholar 

  31. Silva TR, Brondani D, Zapp E, Vieira IC (2015) Electroanalysis 27:465

    Article  CAS  Google Scholar 

  32. Chethana BK, Basavanna S, Naik YA (2012) J Chem Pharm Res 4:538

    CAS  Google Scholar 

  33. Deng P, Xu Z, Zeng R, Ding C (2015) Food Chem 180:156

    Article  CAS  Google Scholar 

  34. Shang L, Zhao F, Zeng B (2014) Food Chem 151:53

    Article  CAS  Google Scholar 

  35. AOAC Official Methods of Analysis (1995) Chapter 36. Association of Official Analytical Chemists, Washington DC

    Google Scholar 

  36. Lasia A (1999) Electrochemical impedance spectroscopy and its applications. In: Conway BE, Bockris J, White E (eds) Modern aspects of electrochemistry, vol 32. Kluwer Academic/Plenum Publishers, New York, p 143

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was funded by the subsidy allocated to Kazan Federal University for the project part of state assignment in the sphere of scientific activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guzel Ziyatdinova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziyatdinova, G., Kozlova, E., Ziganshina, E. et al. Surfactant/carbon nanofibers-modified electrode for the determination of vanillin. Monatsh Chem 147, 191–200 (2016). https://doi.org/10.1007/s00706-015-1559-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1559-8

Keywords

Navigation