Skip to main content
Log in

Explosive properties of nanosized diacetone diperoxide and its nitro derivatives: a DFT study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Using density functional theory calculations, we have investigated relationships between the structures and performance of a series of highly energetic diacetone diperoxides. The assigned infrared spectra of the compounds were used to compute the thermodynamic properties on the basis of the principle of statistical thermodynamics. The thermodynamic properties are linearly related with the number of –NNO2 groups as well as with temperature. The detonation pressures and velocities were evaluated using the Kamlet–Jacobs equations based on the theoretical density and condensed heat of formations. Results indicate that the replacement of H atoms of diacetone diperoxide by –NO2 groups is a better strategy for enhancing the detonation performance than replacement of O atoms by –NNO2 groups. It was found that by increasing the number of the nitro groups detonation properties will be increased. We suggest that octanitro-diacetone diperoxide may outperform the standard compound RDX (1,3,5-trinitro-1,3,5-trizinane), and will be a potential candidate for high-energetic density compounds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chu F, Tsiminis G, Spooner NA, Monro TM (2014) Sens Actuator B Chem 199:22

    Article  CAS  Google Scholar 

  2. Mastanaiah P, Madhusudhan Reddy G, Satya Prasad K, Murthy CVS (2014) J Mater Proc Tech 214:2316

    Article  CAS  Google Scholar 

  3. Emich F (1900) Monatsh Chem 21:1061

    Article  CAS  Google Scholar 

  4. Landenberger KB, Bolton O, Matzger AJ (2013) Angew Chem Int Ed 52:6468

    Article  CAS  Google Scholar 

  5. Maty R, Pachman J (2010) Propellants Explos Pyrotech 35:31

    Google Scholar 

  6. Xu XJ, Xiao HM, Gong XD, Ju XH, Chen ZX (2005) J Phys Chem A 109:11268

    Article  CAS  Google Scholar 

  7. Zhang J, Du H, Wang F, Gong X, Huang Y (2012) J Mol Model 18:165

    Article  CAS  Google Scholar 

  8. Lin H, Chen P-Y, Zhu S-G, Zhang L, Peng X-H, Li K, Li H-Z (2013) J Mol Model 19:2413

    Article  CAS  Google Scholar 

  9. Türker L, Atalar T, Gümüs S, Camur Y (2009) J Hazard Mater 167:440

    Article  Google Scholar 

  10. Ochterski JW (2000) Thermochemistry in Gaussian. http://www.gaussian.com/thermo/thermo.pdf

  11. Curtiss LA, Raghavachari K, Deutsch PW, Pople JA (1991) J Chem Phys 95:2433

    Article  CAS  Google Scholar 

  12. Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012) J Mol Model 18:2653

    Article  CAS  Google Scholar 

  13. Chase MW, Davies CA Jr, Downey JR, Frurip DJ Jr, McDonald RA, Syverud AN (1985) J Phys Chem Ref Data 14(Suppl No 1)

  14. Charlton MH, Docherty R, Hutchings MG (1995) J Chem Soc Perkin Trans 2:2023

    Article  Google Scholar 

  15. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063

    Article  CAS  Google Scholar 

  16. Zhang XH, Yun ZH (1989) Explosive chemistry. National Defence Industry Press, Beijing

    Google Scholar 

  17. Qiu L, Xiao H, Gong X, Ju X, Jhu W (2007) J Hazard Mater 141:280

    Article  CAS  Google Scholar 

  18. Zhao G, Lu M (2012) Bull Korean Chem Soc 33:1913

    Article  CAS  Google Scholar 

  19. Pagoria PF, Lee JS, Mitchell AR, Schmidt RD (2002) Thermochim Acta 384:187

    Article  CAS  Google Scholar 

  20. Harris NJ, Lammertsma K (1997) J Am Chem Soc 119:6583

    Article  CAS  Google Scholar 

  21. Lide DR (ed) (2002) CRC handbook of chemistry and physics. CRC Press LLC, Boca Raton

    Google Scholar 

  22. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2011) J Mol Model 17:2569

    Article  Google Scholar 

  23. Murray JS, Concha MC, Politzer P (2009) Mol Phys 107:89

    Article  CAS  Google Scholar 

  24. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  25. Scott AP, Radom L (1996) J Phys Chem 100:16502

    Article  CAS  Google Scholar 

  26. Chen ZX, Xiao JM, Xiao HM, Chiu YN (1999) J Phys Chem A 103:8062

    Article  CAS  Google Scholar 

  27. Beheshtian J, Peyghan AA, Bagheri Z (2012) Monatsh Chem 143:1623

    Article  CAS  Google Scholar 

  28. Peyghan AA, Aslanzadeh SA (2014) Monatsh Chem 145:1253

    Article  CAS  Google Scholar 

  29. Peyghan AA, Rastegar SF, Bagheri Z (2015) Monatsh Chem. doi:10.1007/s00706-014-1378-3

    Google Scholar 

  30. Peyghan AA, Soltani A, Pahlevani AA, Kanani Y, Khajeh S (2013) App Surf Sci 270:25

    Article  CAS  Google Scholar 

  31. Beheshtian J, Peyghan AA, Bagheri Z (2012) J Mol Model 19:391

    Article  Google Scholar 

  32. Rastegar SF, Peyghan AA, Hadipour NL (2012) App Surf Sci 265:412

    Article  Google Scholar 

  33. Hill TL (1960) Introduction to statistic thermodynamics. Addison-Wesley, New York

    Google Scholar 

  34. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23

    Article  CAS  Google Scholar 

  35. Chen ZX, Xiao JM, Xiao HM, Chiu YN (1999) J Phys Chem A 103:8062

    Article  CAS  Google Scholar 

  36. Stine JR (1981) Los Alamos National Laboratory Report. New Mexico

  37. Ammon HL (2001) Struct Chem 12:205

    Article  CAS  Google Scholar 

  38. Karfunkel HR, Gdanitz RJ (1992) J Comput Chem 13:1171

    Article  CAS  Google Scholar 

  39. Rice BM, Sorescu DC (2004) J Phys Chem B 108:17730

    Article  CAS  Google Scholar 

  40. Qiu L, Xiao HM, Gong XD, Ju XH, Zhu W (2007) J Hazard Mater 141:280

    Article  CAS  Google Scholar 

  41. Qiu L, Xiao HM, Ju XH, Gong XD (2005) Int J Quantum Chem 105:48

    Article  CAS  Google Scholar 

  42. Qiu L, Xiao HM, Ju XH, Gong XD (2005) Chin J Chem Phys 18:541

    Google Scholar 

  43. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol Phys 107:2095

    Article  CAS  Google Scholar 

  44. Xu XJ, Xiao HM, Gong XD, Ju XH, Chen ZX (2005) J Phys Chem 109:11268

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ahmadi Peyghan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahnooji, M., Pandas, H.M., Mirzaei, M. et al. Explosive properties of nanosized diacetone diperoxide and its nitro derivatives: a DFT study. Monatsh Chem 146, 1401–1408 (2015). https://doi.org/10.1007/s00706-015-1419-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1419-6

Keywords

Navigation