Skip to main content

Advertisement

Log in

Zinc(II) complexes with hydroxocarboxylates and mixed metal species with tin(II) in different salts aqueous solutions at different ionic strengths: formation, stability, and weak interactions with supporting electrolytes

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

This paper reports the results of an investigation carried out on the interaction between Zn(II) and some hydroxocarboxylic ligands (L), namely: malate (Mala2−), tartrate (Tar2−) and citrate (Cit3−). The stability constants of the mono- and polynuclear ZniHjL (2i+j−kz)k species were determined by potentiometric measurements at T = 298.15 K in different ionic media, NaCl(aq) and NaNO3(aq), at different ionic strengths: I = 0.15 mol dm−3 (NaCl(aq)) and 1.00 mol dm−3 (NaCl(aq) and NaNO3(aq)). As a further contribution to the study of the formation of mixed species, that are of particular importance in fluids that hyperaccumulated metal ions, the ternary interactions between two different metals and a ligand (Zn2+/Sn2+/hydroxocarboxylic ligands) were also investigated. The formation of the hetero-metal complexes produces an enhancement of the stability of the complexes with respect to the same homo-metal ones, shifting significantly the pH of precipitation of the sparingly soluble species and increasing the mobility and bioavailability of the species. From the analysis of experimental data at I = 1.00 mol dm−3 in NaCl(aq) and NaNO3(aq), it results that the stability constants in NaCl(aq) are significantly higher than the ones in NaNO3(aq). The higher stability of the species in NaCl(aq) can be explained in terms of ion pairs formation with chloride ion. As an example, for the hetero-metals/Mala/chloride system, the following stability constants, on the basis of the general reaction: mixed-complex + Cl = mixed-complex/Cl (quaternary species), we obtained: log K 1111 = 0.48, log K 1121 = 0.36, log K 112-11 = 0.82 for ZnSnMalaCl, ZnSn(Mala)2Cl, and ZnSn(Mala)2OHCl, respectively. The sequestering ability of the three ligands toward Zn2+ was evaluated, at different experimental conditions, by means of the empirical parameter, pL0.5. The effect of the chloride anion on the stability of various species and on the sequestration of the metal was also evaluated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Günther K, Kastenholz B (2005) Speciation of Zinc. in: handbook of elemental speciation II–species in the environment, food, medicine and occupational health. Wiley, Chichester, p 488

    Book  Google Scholar 

  2. Yang R, van den Berg CMG (2009) Environ Sci Technol 43:7192

    Article  CAS  Google Scholar 

  3. Gungor EBO, Bekbolet M (2010) Geoderma 159:131

    Article  Google Scholar 

  4. Dinu MI (2010) Water Resour 37:65

    Article  CAS  Google Scholar 

  5. Lucena JJ, Gárate A, Villén M (2010) J Plant Nutr Soil Sci 173:900

    Article  CAS  Google Scholar 

  6. Martell AE, Smith RM, Motekaitis RJ (2004) Critically selected stability constants of metal complexes. National Institute of Standard and Technology, NIST. PC-based Database, Gaithersburg

    Google Scholar 

  7. Pettit L, Powell KJ (2001) The IUPAC Stability Constants Database. Academic Software

  8. Perrin DD (1979) Stability constants of metal-ion complexes. Part B: Organic ligands. 2. Suppl, Z 2, vol 322. Pergamon Press edn. WILEY-VCH, NY, USA

  9. Martell AE, Motekaitis RJ, Smith RM (1997) NIST-Database 46. Gaithersburg

  10. May P, Murray K (2000) Joint Expert Speciation System (JESS). Murdoch, Western Australia

    Google Scholar 

  11. Booman GL, Holbrook WB (1959) Anal Chem 31:10

    Article  Google Scholar 

  12. Lauer RS, Mishchenko VT, Poluektov NS (1968) Russ J Inorg Chem 13:2415

    CAS  Google Scholar 

  13. Schulz WW, Mendel JE, Phillips JF Jr (1966) J Inorg Nucl Chem 28:2399

    Article  CAS  Google Scholar 

  14. Stepanov AV, Shvedov VP, Rozhnov AP (1965) Russ J Inorg Chem 10:1379

    CAS  Google Scholar 

  15. Poluektov NS, Mishchenko VT (1965) Russ J Inorg Chem 10:2275

    CAS  Google Scholar 

  16. Cigala R, Crea F, Stefano C, Milea D, Sammartano S, Scopelliti M (2013) Monatsh Chem 144:761

    Article  CAS  Google Scholar 

  17. Amico P, Arena G, Daniele PG, Ostacoli G, Rizzarelli E, Sammartano S (1985) In: Irgolic KJ, Martell AE (eds) Environmental inorganic chemistry, chap XIII. VCH Publishers

  18. Amico P, Daniele PG, Ostacoli G, Arena G, Rizzarelli E, Sammartano S (1980) Inorg Chim Acta 44:L219

    Article  CAS  Google Scholar 

  19. Amico P, Daniele PG, Ostacoli G, Arena G, Rizzarelli E, Sammartano S (1985) Transition Met Chem 10:11

    Article  CAS  Google Scholar 

  20. Cigala RM, De Stefano C, Giacalone A, Gianguzza A, Sammartano S (2013) J Chem Eng Data 58:821

    Article  CAS  Google Scholar 

  21. Crea F, Milea D, Sammartano S (2005) Talanta 65:229

    Article  CAS  Google Scholar 

  22. Crea F, Milea D, Sammartano S (2005) Ann Chim (Rome) 95:767

    Article  CAS  Google Scholar 

  23. Crea P, De Stefano C, Milea D, Sammartano S (2008) Mar Chem 112:142

    Article  CAS  Google Scholar 

  24. Daniele PG, De Robertis A, Ostacoli G, Sammartano S, Zerbinati O (1988) Transition Met Chem 13:87

    Article  CAS  Google Scholar 

  25. Gianguzza A, Dia G, Sammartano S, De Stefano C (1988) J Chem Res (S) 12(M)

  26. Crea F, De Stefano C, Foti C, Milea D, Sammartano S (2014) Curr Med Chem 21:3819

    Article  CAS  Google Scholar 

  27. Crea F, Foti C, Sammartano S (2008) Talanta 75:775

    Article  CAS  Google Scholar 

  28. Cigala RM, Crea F, De Stefano C, Lando G, Manfredi G, Sammartano S (2013) J Mol Liq 165:143

    Article  Google Scholar 

  29. Cigala RM, Crea F, De Stefano C, Lando G, Milea D, Sammartano S (2012) J Chem Thermodyn 51:88

    Article  CAS  Google Scholar 

  30. Crea F, De Robertis A, De Stefano C, Sammartano S (2007) Talanta 71:948

    Article  CAS  Google Scholar 

  31. Baes CF, Mesmer RE (1986) The hydrolysis of cations. R.E Krieger, Florida

    Google Scholar 

  32. Crea F, De Stefano C, Milea D, Sammartano S (2009) J Solution Chem 38:115

    Article  CAS  Google Scholar 

  33. Cigala RM, Crea F, De Stefano C, Lando G, Milea D, Sammartano S (2012) Geochim Cosmochim Acta 87:1

    Article  CAS  Google Scholar 

  34. De Stefano C, Sammartano S, Mineo P, Rigano C (1997) Computer tools for the speciation of natural fluids. In: Gianguzza A, Pelizzetti E, Sammartano S (eds) Marine chemistry–an environmental analytical chemistry approach. Kluwer Academic Publishers, Amsterdam, p 71

    Google Scholar 

  35. Bottari E, Cellulosi D, Festa MR (1999) Talanta 50:993

    Article  CAS  Google Scholar 

  36. Gaidamauskas E, Norkus E, Vaiciuniené J, Crans DC, Vuorinen T, Jaciauskiené J, Baltrunas G (2005) Carbohydr Res 340:1553

    Article  CAS  Google Scholar 

  37. Vicedomini M (1981) Ann Chim (Rome) 71:213

    CAS  Google Scholar 

  38. Gianguzza A, Giuffrè O, Piazzese D, Sammartano S (2012) Coord Chem Rev 256:222

    Article  CAS  Google Scholar 

  39. Bazzicalupi C, Bianchi A, Giorgi C, Clares MP, Garcia-Espana E (2012) Coord Chem Rev 256:13

    Article  CAS  Google Scholar 

  40. Schwarzenbach G (1955) Die komplexometrische titration. Ferdinand Enke, Stuttgart

    Google Scholar 

  41. Daniele PG, De Robertis A, De Stefano C, Gianguzza A, Sammartano S (1990) J Chem Res (S) 300(M):2316–2350

    Google Scholar 

  42. Daniele PG, Zerbinati O, De Robertis A, De Stefano C, Sammartano S (1989) J Chem Soc Dalton Trans 1745–1749

  43. Janrao DM, Shimpi RP, Fadat RB (2012) J Chem Pharm Res 4:1965

    CAS  Google Scholar 

  44. Aljahdali M, El-Sherif A (2012) J Solution Chem 41:1759

    Article  CAS  Google Scholar 

  45. Altun Y, Koseog F (2005) J Solution Chem 34:213

    Article  CAS  Google Scholar 

  46. Khan F, Khan F (2007) J Indian Chem Soc 84:702

    CAS  Google Scholar 

  47. Magare BK, Ubale MB (2011) Pharma Chem 3:323

    CAS  Google Scholar 

  48. Nadkarni NG, Mangaonkar KV (2011) E-J Chem 8:1765

    Article  CAS  Google Scholar 

  49. Pawar RP, Raut VM, Bhise MP, Murhekar GH, Wadekar MP, Banewar VW, Gulwade DP (2009) Oriental J Chem 25:1117

    CAS  Google Scholar 

  50. Sheik Mansoor S (2010) Int J Chem Tech Res 2:640

    CAS  Google Scholar 

  51. Singh PK, Singh S (2010) J Chemtracks 12:303

    CAS  Google Scholar 

  52. Zaid AA, Farooqui M, Janrao DM (2011) Asian J Biochem Pharm Res 1:22

    CAS  Google Scholar 

  53. Zakee M, Das Manwal D (2003) J Electrochem Soc India 52:14

    CAS  Google Scholar 

  54. Binder B (1971) Inorg Chem 10:2146

    Article  CAS  Google Scholar 

  55. Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A (1999) Coord Chem Rev 184:311

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank University of Messina for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Crea.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Supplementary material 2 (ZIP 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cigala, R.M., Crea, F., De Stefano, C. et al. Zinc(II) complexes with hydroxocarboxylates and mixed metal species with tin(II) in different salts aqueous solutions at different ionic strengths: formation, stability, and weak interactions with supporting electrolytes. Monatsh Chem 146, 527–540 (2015). https://doi.org/10.1007/s00706-014-1394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1394-3

Keywords

Navigation