Skip to main content
Log in

Speciation of Phytate Ion in Aqueous Solution. Thermodynamic Parameters for Zinc(II) Sequestration at Different Ionic Strengths and Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Results of an investigation on phytate interactions with zinc(II) cation in NaNO3aq at different ionic strengths (0.1≤I/mol⋅L−1≤1.0) are reported. Stability constants of various Zn i H j Phy(12−2ij)− species were determined by potentiometry (ISE-H+ glass electrode) and the corresponding formation enthalpies by direct calorimetric titrations. Data obtained were used to provide an exhaustive speciation scheme of zinc(II) in the presence of phytate, as well as a comprehensive representation of the binding ability of phytate toward zinc(II) in different conditions. Different pL50 values [an empirical parameter already proposed, expressed as the −log 10 C Phy, where C Phy is the total phytate concentration necessary to bind 50% zinc(II)] were calculated in several conditions, and equations were formulated to model its dependence on different variables, such as ionic strength, temperature and pH. Other empirical predictive relationships are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crea, F., De Stefano, C., Milea, D., Sammartano, S.: Formation and stability of phytate complexes in solution. Coord. Chem. Rev. 252, 1108–1120 (2008)

    Article  CAS  Google Scholar 

  2. Oatway, L., Vasanthan, T., Helm, J.H.: Phytic Acid. Food Rev. Int. 17, 419–431 (2001)

    Article  CAS  Google Scholar 

  3. Konietzny, U., Jany, K.D., R., G.: Phytate-an undesiderable constituent of plant-based foods? J. Ernaehrungsmed. 8, 18–28 (2006)

    CAS  Google Scholar 

  4. Shears, S.B.: Assessing the omnipotence of inositol hexakisphosphate. Cell. Signal. 13, 151–158 (2001)

    Article  CAS  Google Scholar 

  5. Urbano, G., Lopez-Jurado, M., Vidal-Valverde, C., Tenorio, E., Porres, J.: The role of phytic acid in legumes: antinutrient or beneficial function? J. Physiol. Biochem. 56, 283–294 (2000)

    Article  CAS  Google Scholar 

  6. Prasad, A.N.: Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp. Gerontol. 43, 370–377 (2008)

    Article  CAS  Google Scholar 

  7. Haydon, M.J., Cobbett, C.S.: Transporters of ligands for essential metal ions in plants. New Phytol. 174, 499–506 (2007)

    Article  CAS  Google Scholar 

  8. Kim, J., Paik, H.Y., Joung, H., Woodhouse, L.R., Li, S., King, J.C.: Effect of dietary phytate on zinc homeostasis in young and elderly Korean women. J. Am. Coll. Nutr. 26, 1–9 (2007)

    CAS  Google Scholar 

  9. Welch, R., House, W.A., Ortiz-Monasterio, I., Cheng, Z.: Potential for improving bioavailable zinc in wheat grain (Triticum species) through plant breeding. J. Agric. Food Chem. 53, 2176–2180 (2005)

    Article  CAS  Google Scholar 

  10. Rodrigues-Filho, U.P., Vaz, S., Felicissimo, M.P., Scarpellini, M., Cardoso, D.R., Vinhas, R.C.J., Landers, R., Schneider, J.F., McGarvey, B.R., Andersen, M.L., Skibsted, L.H.: Heterometallic manganese/zinc-phytate complex as a model compound for metal storage in wheat grains. J. Inorg. Biochem. 99, 1973–1982 (2005)

    Article  CAS  Google Scholar 

  11. Reddy, N.R., Sathe, S.K.: Food Phytates. CRC Press, Boca Raton (2001)

    Google Scholar 

  12. Ma, G., Jin, Y., Piao, J., Kok, F., Guusje, B., Jacobsen, E.: Phytate, calcium, iron, and zinc contents and their molar ratios in foods commonly consumed in China. J. Agric. Food Chem. 53, 10285–10290 (2007)

    Article  CAS  Google Scholar 

  13. Polycarpe Kayodé, A.P., Linnemann, A.R., Hounhouigan, J.D., Nout, M.J.R., van Boekel, M.A.J.S.: Genetic and environmental impact on iron, zinc, and phytate in food sorghum grown in Benin. J. Agric. Food. Chem. 54, 256–262 (2007)

    Article  CAS  Google Scholar 

  14. Lonnerdal, B.: Phytic acid-trace element (Zn, Cu, Mn) interactions. Int. J. Food Sci. Technol. 37, 749–758 (2002)

    Article  CAS  Google Scholar 

  15. Nosworthy, N., Caldwell, R.A.: The interaction of zinc(II) and phytic acid with soya bean glycinin. Sci. Food Agric. 44, 143–150 (1988)

    Article  CAS  Google Scholar 

  16. Bebot-Brigaud, A., Dange, C., Fauconnier, N., Gérard, C.: 31P NMR, potentiometric and spectrophotometric studies of phytic acid ionization and complexation properties toward Co2+, Ni2+, Cu2+, Zn2+ and Cd2+. J. Inorg. Biochem. 75, 71–78 (1999)

    Article  CAS  Google Scholar 

  17. Torres, J., Dominguez, S., Cerda, M.F., Obal, G., Mederos, A., Irvine, R.F., Diaz, A., Kremer, C.: Solution behaviour of myo-inositol hexakisphosphate in the presence of multivalent cations. Prediction of a neutral pentamagnesium species under cytosolic/nuclear conditions. J. Inorg. Biochem. 99, 828–840 (2005)

    Article  CAS  Google Scholar 

  18. Champagne, E.T., Fisher, M.S.: Binding differences of Zn(II) and Cu(II) ions with phytate. J. Inorg. Biochem. 38, 217–223 (1990)

    Article  CAS  Google Scholar 

  19. Martin, C.J., Evans, W.J.: Phytic acid-zinc ion interactions: A calorimetric and titrimetric study. J. Inorg. Biochem. 26, 169–183 (1986)

    Article  CAS  Google Scholar 

  20. Persson, H., Türk, M., Nyman, M., Sandberg, A.S.: Binding of Cu2+, Zn2+, and Cd2+ to inositol tri-, tetra-, penta-, and hexaphosphates. J. Agric. Food Chem. 46, 3194–3200 (1998)

    Article  CAS  Google Scholar 

  21. Pierce, A.G.: Structure studies of phytate-zinc ion complexes: X-Ray diffraction and thermal analysis. Inorg. Chim. Acta 106, L9–L12 (1985)

    Article  CAS  Google Scholar 

  22. Templeton, D.M., Ariese, F., Cornelis, R., Danielsson, L.G., Muntau, H., van Leeuwen, H.P., Lobinski, R.: Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches. Pure Appl. Chem. 72, 1453–1470 (2000)

    Article  CAS  Google Scholar 

  23. Flaschka, H.A.: EDTA Titration. Pergamon, London (1959)

    Google Scholar 

  24. De Stefano, C., Princi, P., Rigano, C., Sammartano, S.: Computer analysis of equilibrium data in solution. ESAB2M: An improved version of the ESAB program. Ann. Chim. (Rome) 77, 643–675 (1987)

    Google Scholar 

  25. De Stefano, C., Mineo, P., Rigano, C., Sammartano, S.: Ionic strength dependence of formation constants. XVII. The calculation of equilibrium concentrations and formation constants. Ann. Chim. (Rome) 83, 243–277 (1993)

    Google Scholar 

  26. De Stefano, C., Foti, C., Giuffrè, O., Mineo, P., Rigano, C., Sammartano, S.: Binding of tripolyphosphate by aliphatic amines: Formation, stability and calculation problems. Ann. Chim. (Rome) 86, 257–280 (1996)

    Google Scholar 

  27. De Stefano, C., Sammartano, S., Mineo, P., Rigano, C.: Computer tools for the speciation of natural fluids. In: Gianguzza, A., Pelizzetti, E., Sammartano, S. (eds.) Marine Chemistry—An Environmental Analytical Chemistry Approach, pp. 71–83. Kluwer Academic, Amsterdam (1997)

    Google Scholar 

  28. De Robertis, A., De Stefano, C., Rigano, C.: Computer analysis of equilibrium data in solution. ES5CM Fortran and Basic programs for computing formation enthalpies from calorimetric measurements. Thermochim. Acta 138, 141–146 (1989)

    Article  Google Scholar 

  29. Millero, F.J.: The apparent and partial molal volume of aqueous sodium chloride solutions at various temperatures. J. Phys. Chem. 74, 356–362 (1970)

    Article  CAS  Google Scholar 

  30. Biederman, G.: Ionic Media. In: Dahlem Workshop on the Nature of Seawater, pp. 339–362. Dahlem Konferenzen, Berlin (1975)

  31. Biederman, G., Introduction to the specific interaction theory with emphasis on chemical equilibria. In: Jenne, E.A., Rizzarelli, E., Romano, V.: Sammartano, S. (eds.) Metal Complexes in Solution, pp. 303–314. Piccin, Padua, Italy (1986)

  32. Grenthe, I., Puigdomenech, I.: Modelling in Aquatic Chemistry. OECD, Paris (1997)

    Google Scholar 

  33. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  34. Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC Press, Inc., Boca Raton (1991)

    Google Scholar 

  35. Millero, F.J.: Use of models to determine ionic interactions in natural waters. Thalass. Jugosl. 18, 253–291 (1982)

    Google Scholar 

  36. Bretti, C., Giacalone, A., Gianguzza, A., Milea, D., Sammartano, S.: Modeling S-carboxymethyl-L-cysteine protonation and activity coefficients in sodium and tetramethylammonium chloride aqueous solutions by SIT and Pitzer equations. Fluid Phase Equilib. 252, 119–129 (2007)

    Article  CAS  Google Scholar 

  37. Crea, P., De Robertis, A., De Stefano, C., Milea, D., Sammartano, S.: Modelling the dependence on medium and ionic strength of glutathione acid-base behavior in LiClaq, NaClaq, KClaq, CaClaq, (CH3)4NClaq and (C2H5)4NIaq. J. Chem. Eng. Data 52, 1028–1036 (2007)

    Article  CAS  Google Scholar 

  38. Crea, P., De Stefano, C., Milea, D., Porcino, N., Sammartano, S.: Speciation of phytate ion in aqueous solution. Protonation constants and copper(II) interactions in NaNO3aq at different ionic strengths. Biophys. Chem. 128, 176–184 (2007)

    Article  CAS  Google Scholar 

  39. Baes, C.F., Mesmer, R.E.: The Hydrolysis of Cations. Wiley, New York (1976)

    Google Scholar 

  40. Daniele, P.G., Foti, C., Gianguzza, A., Prenesti, E., Sammartano, S.: Weak alkali and alkaline earth metal complexes of low molecular weight ligands in aqueous solution. Coord. Chem. Rev. 252, 1093–1107 (2008)

    Article  CAS  Google Scholar 

  41. De Stefano, C., Milea, D., Porcino, N., Sammartano, S.: Speciation of phytate ion in aqueous solution. Cadmium(II) interactions in NaClaq at different ionic strengths. Anal. Bioanal. Chem. 386, 346–356 (2006)

    Article  CAS  Google Scholar 

  42. De Stefano, C., Milea, D., Porcino, N., Sammartano, S.: Speciation of phytate ion in aqueous solution. Sequestering ability towards mercury(II) cation in NaClaq at different ionic strengths. J. Agric. Food Chem. 54, 1459–1466 (2006)

    Article  CAS  Google Scholar 

  43. De Stefano, C., Milea, D., Sammartano, S.: Speciation of phytate ion in aqueous solution. Dimethyltin(IV) interactions in NaClaq at different ionic strengths. Biophys. Chem. 116, 111–120 (2005)

    Article  CAS  Google Scholar 

  44. De Stefano, C., Milea, D., Sammartano, S.: Speciation of phytate ion in aqueous solution. Thermodynamic parameters for protonation in NaCl. Thermochim. Acta 423, 63–69 (2004)

    Article  CAS  Google Scholar 

  45. Clarke, E.C.W., Glew, D.N.: Evaluation of thermodynamic functions from equilibrium constants. Trans. Faraday Soc. 62, 539–547 (1966)

    Article  CAS  Google Scholar 

  46. Crea, F., De Robertis, A., De Stefano, C., Sammartano, S.: Dioxouranium(VI)-carboxylate complexes. Interaction of UO 2+2 with 1,2,3,4,5,6-benzenehexacarboxylate (mellitate) in 0 < NaClaq < 1.0 mol L−1. J. Solution Chem. 36, 479–496 (2007)

    Article  CAS  Google Scholar 

  47. Sillén, L.G., Martell, A.E.: Stability Constants of Metal Ion Complexes. Special Publ. 17. The Chemical Society, Wiley, London (1964)

    Google Scholar 

  48. Sillén, L.G., Martell, A.E.: Stability Constants of Metal Ion Complexes. Supplement Special Publ. 25. The Chemical Society, Wiley, London (1964)

    Google Scholar 

  49. Pettit, D., Powell, K.: IUPAC Stability Constants Database. Academic Software, Otley (1997)

    Google Scholar 

  50. May, P.M., Murray, K.: Database of Chemical reactions designed to achieve thermodynamic consistency automatically. J. Chem. Eng. Data 46, 1035–1040 (2001)

    Article  CAS  Google Scholar 

  51. Martell, A.E., Smith, R.M., Motekaitis, R.J.: NIST Standard Reference Database 46, vers. 8, Gaithersburg (2004)

  52. De Stefano, C., Milea, D., Pettignano, A., Sammartano, S.: Speciation of phytate ion in aqueous solution. Alkali metal complex formation in different ionic media. Anal. Bioanal. Chem. 376, 1030–1040 (2003)

    Article  CAS  Google Scholar 

  53. Li, N., Wahlberg, O., Puigdomenech, I.: Equilibrium studies of phytate ions—Metal ion phytate complexes formed in aqueous solution; Methods and characterization of the phytate ligand. Chem. Scr. 29, 91–95 (1989)

    CAS  Google Scholar 

  54. Li, N., Wahlberg, O., Puigdomenech, I., Ohman, L.O.: Equilibrium studies of phytate ions. 1. Equilibria between phytate ions and protons in 3 M NaClO4 medium. Acta Chem. Scand. 43, 331–339 (1989)

    Article  CAS  Google Scholar 

  55. Li, N., Wahlberg, O.: Equilibrium studies of phytate ions. 2. Equilibria between phytate ions, sodium ions and protons in sodium perchlorate media. Acta Chem. Scand. 43, 401–406 (1989)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Sammartano.

Additional information

Previous contributions to this series reviewed in ref. [1].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crea, F., De Stefano, C., Milea, D. et al. Speciation of Phytate Ion in Aqueous Solution. Thermodynamic Parameters for Zinc(II) Sequestration at Different Ionic Strengths and Temperatures. J Solution Chem 38, 115–134 (2009). https://doi.org/10.1007/s10953-008-9357-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9357-0

Keywords

Navigation