Skip to main content
Log in

Theoretical study of cation–π interactions of Li+, Na+, and K+ with [6]helicene

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Using quantum-mechanical calculations, the most probable structures of cation–π complexes of Li+, Na+, and K+ with [6]helicene were derived. Further, the corresponding interaction energies of these complexes were calculated; the absolute values of these calculated energies increase in the series of K+ < Na+ < Li+.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shen Y, Chen CF (2012) Chem Rev 112:1463

    Article  CAS  Google Scholar 

  2. Gingras M (2013) Chem Soc Rev 42:968

    Article  CAS  Google Scholar 

  3. Torricelli F, Bosson J, Besnard C, Chekini M, Bürgi T, Lacour J (2013) Angew Chem Int Ed 52:1796

    Article  CAS  Google Scholar 

  4. Nakai Y, Mori T, Inoue Y (2013) J Phys Chem A 117:83

    Article  CAS  Google Scholar 

  5. Furche F, Ahlrichs R, Wachsmann C, Weber E, Sobanski A, Vögtle F, Grimme S (2000) J Am Chem Soc 122:1717

    Article  CAS  Google Scholar 

  6. Nakano K, Oyama H, Nishimura Y, Nakasako S, Nozaki K (2012) Angew Chem Int Ed 51:695

    Article  CAS  Google Scholar 

  7. Xu Y, Zhang YX, Sugiyama H, Umano T, Osuga H, Tanaka K (2004) J Am Chem Soc 126:6566

    Article  CAS  Google Scholar 

  8. Wang DZG, Katz TJ (2005) J Org Chem 70:8497

    Article  CAS  Google Scholar 

  9. Takenaka N, Chen J, Captain B, Sarangthem RS, Chandrakumar A (2010) J Am Chem Soc 132:4536

    Article  CAS  Google Scholar 

  10. Sato I, Yamashima R, Kadowaki K, Yamamoto J, Shibata T, Soai K (2001) Angew Chem Int Ed 40:1096

    Article  CAS  Google Scholar 

  11. Dougherty DA (1996) Science 271:163

    Article  CAS  Google Scholar 

  12. Ma JC, Dougherty DA (1997) Chem Rev 97:1303

    Article  CAS  Google Scholar 

  13. Kim KS, Tarakeshwar P, Lee JY (2000) Chem Rev 100:4145

    Article  CAS  Google Scholar 

  14. Zacharias N, Dougherty DA (2002) Trends Pharm Sci 23:281

    Article  CAS  Google Scholar 

  15. Gokel GW (2003) Chem Commun 2847–2852

  16. Schröder D, Schwarz H, Hrušák J, Pyykkö P (1998) Inorg Chem 37:624

    Article  Google Scholar 

  17. Gapeev A, Yang CN, Klippenstein SJ, Dunbar RC (2000) J Phys Chem A 104:3246

    Article  CAS  Google Scholar 

  18. Tsuzuki S, Yoshida M, Uchimaru T, Mikami M (2001) J Phys Chem A 105:769

    Article  CAS  Google Scholar 

  19. Huang H, Rodgers MT (2002) J Phys Chem A 106:4277

    Article  CAS  Google Scholar 

  20. Mo Y, Subramanian G, Gao J, Ferguson DM (2002) J Am Chem Soc 124:4832

    Article  CAS  Google Scholar 

  21. Reddy AS, Sastry GN (2005) J Phys Chem A 109:8893

    Article  CAS  Google Scholar 

  22. Vijay D, Sastry GN (2008) Phys Chem Chem Phys 10:582

    Article  CAS  Google Scholar 

  23. Sakurai K, Mizuno T, Hiroaki H, Gohda K, Oku J, Tanaka T (2005) Angew Chem Int Ed 44:6180

    Article  CAS  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  25. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian, Inc, Wallingford, CT

  27. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2009) J Phys Chem A 113:5896

    Article  Google Scholar 

  28. Kříž J, Toman P, Makrlík E, Budka J, Shukla R, Rathore R (2010) J Phys Chem A 114:5327

    Google Scholar 

  29. Kříž J, Dybal J, Makrlík E, Vaňura P, Moyer BA (2011) J Phys Chem B 115:7578

    Article  Google Scholar 

  30. Makrlík E, Toman P, Vaňura P (2012) Monatsh Chem 143:199

    Article  Google Scholar 

  31. Toman P, Makrlík E, Vaňura P (2012) Monatsh Chem 143:985

    Article  CAS  Google Scholar 

  32. Makrlík E, Toman P, Vaňura P (2013) Monatsh Chem 144:919

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Project No.: 42900/1312/3114 “Environmental Aspects of Sustainable Development of Society” and by the Czech Ministry of Education, Youth, and Sports (Project MSM 6046137307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Makrlík.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böhm, S., Makrlík, E., Vaňura, P. et al. Theoretical study of cation–π interactions of Li+, Na+, and K+ with [6]helicene. Monatsh Chem 146, 1229–1231 (2015). https://doi.org/10.1007/s00706-014-1393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1393-4

Keywords

Navigation