Skip to main content
Log in

Rotational aspects of non-ionized creatine in the gas phase

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The conformational aspects of the non-ionic creatine molecule were explored in the gas phase at B3LYP/6-31++G(d,p) level. Using the standard split-valence 6-311++G(d,p) basis set, MP2 and B3LYP level calculations were carried out to study the creatine conformers in view of their relative stabilities, predicted harmonic vibrational frequencies, HOMO–LUMO energy gaps, electrostatic potential (ESP) charges, rotational constants, dipole moments, as well as the number and type of intramolecular H-bond interactions existing in them. The relative stability order of the conformers seems to depend on the level of theory used; the vibrational frequencies calculated at B3LYP level are in better agreement with the experimental values compared to those obtained at MP2 level.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guthmiller P, van Pilsum JF, Boen JR, McGuire DM (1994) J Biol Chem 269:17556

    CAS  Google Scholar 

  2. Guimbal C, Kilimann MW (1993) J Biol Chem 268:8418

    CAS  Google Scholar 

  3. Cannan RK, Shore A (1928) Biochem J 22:920

    CAS  Google Scholar 

  4. Jacohus WE, Lehninger AL (1973) J Biol Chem 248:4803

    Google Scholar 

  5. Klivenyi P, Ferrante RJ, Matthews RT, Bogdanov MB, Klein AM, Andreassen OA, Mueller G, Wermer M, Kaddurah-Daouk R, Beal MF (1999) Nat Med 5:347

    Article  CAS  Google Scholar 

  6. Blanchard V, Raisman-Vozari R, Vyas S, Michel PP, Javoy-Agid F, Uhl G (1994) Mol Brain Res 22:29

    Article  CAS  Google Scholar 

  7. Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) Amino Acids 40:1271

    Article  CAS  Google Scholar 

  8. Parise G, Mihic S, MacLennan D, Yarasheski KF, Tarnopolsky MA (2001) J Appl Physiol 91:1041

    CAS  Google Scholar 

  9. Peterson JR, Bickford LC, Morgan D, Kim AS, Ouerfelli O, Kirschner MW, Rosen MK (2004) Nat Struct Mol Biol 11:747

    Article  CAS  Google Scholar 

  10. Plaxco KW, Gross M (1997) Nature 386:657

    Article  CAS  Google Scholar 

  11. Uversky VN, Gillespie JR, Fink AL (2000) Proteins 41:415

    Article  CAS  Google Scholar 

  12. Das G, Mandal S (2013) J Mol Model 19:1695

    Article  CAS  Google Scholar 

  13. Kaur D, Sharma P, Bharatam PV, Kaur M (2008) Int J Quant Chem 108:983

    Article  CAS  Google Scholar 

  14. Czinki E, Csaszar AG (2003) Chem Eur J 9:1008

    Article  CAS  Google Scholar 

  15. Chen M, Huang Z, Lin Z (2005) J Mol Struct (Theochem) 719:153

    Article  CAS  Google Scholar 

  16. Zhang M, Lin Z (2006) J Mol Struct (Theochem) 760:159

    Article  CAS  Google Scholar 

  17. Huang Z, Lin Z (2005) J Phys Chem A 109:2656

    CAS  Google Scholar 

  18. Szidarovszky T, Czako G, Csaszar AG (2009) Mol Phys 107:761

    Article  CAS  Google Scholar 

  19. Tehrani ZA, Tavasoli E, Fattahi A (2010) J Mol Struct (Theochem) 960:73

    Article  CAS  Google Scholar 

  20. Lambie B, Ramaekers R, Maes G (2004) J Phys Chem A 108:10426

    CAS  Google Scholar 

  21. Stepanian SG, Reva ID, Radchenko ED, Adamowicz L (1998) J Phys Chem A 102:4623

    CAS  Google Scholar 

  22. Gronert S, O’Hair RAJ (1995) J Am Chem Soc 117:2071

    Article  CAS  Google Scholar 

  23. Shirazian S, Gronert S (1997) J Mol Struct (Theochem) 397:107

    Article  Google Scholar 

  24. Cabezas C, Varela M, Cortijo V, Jimenez AI, Pena I, Daly AM, Lopez JC, Cativielab C, Alonso JL (2013) Phys Chem Chem Phys 15:2580

    Article  CAS  Google Scholar 

  25. Saric A, Hrenar T, Malis M, Doslic N (2010) Phys Chem Chem Phys 12:4678

    Article  CAS  Google Scholar 

  26. Vargas R, Garza J, Hay BP, Dixon DA (2002) J Phys Chem A 106:3213

    CAS  Google Scholar 

  27. Artis DR, Lipton MA (1998) J Am Chem Soc 120:12200

    Article  CAS  Google Scholar 

  28. Foloppe N, Hartmann B, Nilsson L, MacKerell AD Jr (2002) Biophys J 82:1554

    Article  CAS  Google Scholar 

  29. Wang K, Zhang J, Xu G (2011) Int J Quant Chem 111:4296

    Article  CAS  Google Scholar 

  30. Chelli R, Gervasio FL, Gellini C, Procacci P, Cardini G, Schettino V (2000) J Phys Chem A 104:11220

    CAS  Google Scholar 

  31. Goddard JD, Yamaguchi Y, Schaefer HF III (1992) J Chem Phys 96:1158

    CAS  Google Scholar 

  32. Stepanian SG, Reva ID, Radchenko ED, Rosado MTS, Duarte MLTS, Fausto R, Adamowicz L (1998) J Phys Chem A 102:1041

    CAS  Google Scholar 

  33. Lesarri A, Sanchez R, Cocinero EJ, Lopez JC, Alonso JC (2005) J Am Chem Soc 127:12952

    Article  CAS  Google Scholar 

  34. Das G, Mandal S (2014) Monatsh Chem 145:357

    Article  CAS  Google Scholar 

  35. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1637

    CAS  Google Scholar 

  36. Das G, Lyngdoh RHD (2013) J Biomol Struct Dyn. doi:10.1080/07391102.2013.824822

    Google Scholar 

  37. Brovarets OO, Hovorun DM (2013) J Biomol Struct Dyn 32:127

    Article  Google Scholar 

  38. Yurenko YP, Zhurakivsky RO, Samijlenko SP, Hovorun DH (2011) J Biomol Struct Dyn 29:51

    Article  CAS  Google Scholar 

  39. Hehre WJ, Radom L, PvR Schleyer, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  40. Lee SY, Boo BH (1996) J Phys Chem 100:8782

    CAS  Google Scholar 

  41. Lee SY (2004) Bull Korean Chem Soc 25:1855

    Article  CAS  Google Scholar 

  42. Dimitrova Y (2004) Spectrochim Act Part A 60:1

    Article  Google Scholar 

  43. Proft FD, Martin JML, Geerlings P (1996) Chem Phys Lett 250:393

    Google Scholar 

  44. Linder R, Seefeld K, Vavra A, Kleinermanns K (2008) Chem Phys Lett 453:1

    CAS  Google Scholar 

  45. Becke AD (1993) J Chem Phys 98:5648

    CAS  Google Scholar 

  46. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  47. Andersson MP, Uvdal P (2005) J Phys Chem A 109:2937

    CAS  Google Scholar 

  48. Mandal S, Das G (2013) J Mol Model 19:2613

    Article  CAS  Google Scholar 

  49. Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian, Pittsburgh

    Google Scholar 

  50. Freeman F, Le KT (2003) J Phys Chem A 107:2908

    CAS  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian, Wallingford

    Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the financial assistance from the Special Assistance Program of the University Grants Commission to the Department of Chemistry, NEHU. GD is thankful to Council of Scientific and Industrial Research, New Delhi, India, for generous allocation of computational facilities through the Research Project No. 37(1481)/11/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunajyoti Das.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1853 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, G. Rotational aspects of non-ionized creatine in the gas phase. Monatsh Chem 145, 1431–1441 (2014). https://doi.org/10.1007/s00706-014-1210-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1210-0

Keywords

Navigation