Skip to main content
Log in

A study of the aromaticity of the heterofullerene C30X6 and C24X12 (X = B, N) analogs

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The aromaticity of the heterofullerene isomers C30X6 and C24X12 (X = B, N), formed from the initial C36 fullerene with D6h symmetry, has been investigated using both the topological resonance energy (TRE) and the percentage topological resonance energy (%TRE) methods. Our results obtained by the TRE and %TRE methods were compared with the nucleus-independent chemical shift (NICS) values at the cage center. The local aromaticity was studied using the bond resonance energy (BRE) method and compared with the NICS values of the individual rings. The local aromaticity orderings of the different hexagons were obtained using the BRE method. According to the BRE results, we can predict that the C–C bonds shared by two pentagons are stabilized by the introduction of nitrogen atoms, whereas the C–C bonds shared by two hexagons are destabilized by the introduction of boron atoms. The relative orders of the global and local aromaticity are highly dependent upon the types and numbers of the heteroatoms in the structure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Minkin VI, Glukhovtsev MN, Simkin BY (1994) Aromaticity and antiaromaticity. Wiley, New York

    Google Scholar 

  2. Schleyer PvR, Maerker C, Dransfeld A, Jiao HJ, van Eikema Hommes NJR (1996) J Am Chem Soc 118:6317

    Article  CAS  Google Scholar 

  3. Lu X, Chen ZF (2005) Chem Rev 105:3643

    Article  CAS  Google Scholar 

  4. Schleyer PvR, Manoharan M, Wang Z, Kiran B, Jiao HJ, Puchta R, van Eikema Hommes NJR (2001) Org Lett 3:2465

    Article  CAS  Google Scholar 

  5. Lu X, Chen ZF, Thiel W, Schleyer PvR, Huang RB, Zheng LS (2004) J Am Chem Soc 126:14871

    Article  CAS  Google Scholar 

  6. Zhechkov L, Heine T, Seifert G (2004) J Phys Chem A 108:11733

    Article  CAS  Google Scholar 

  7. Diaz Tendero S, Alcami M, Martin F (2005) Chem Phys Lett 407:153

    Article  CAS  Google Scholar 

  8. Zhao X (2005) J Phys Chem B 109:5267

    Article  CAS  Google Scholar 

  9. Piskoti C, Yarger J, Zettl A (1998) Nature 393:771

    Article  CAS  Google Scholar 

  10. Koshio A, Inakuma M, Sugai T, Shinohara H (2000) J Am Chem Soc 122:398

    Article  CAS  Google Scholar 

  11. Koshio A, Inakuma M, Wang ZW, Sugai T, Shinohara H (2000) J Phys Chem B 104:7908

    Article  CAS  Google Scholar 

  12. Hirch A, Chen Z, Jiao H (2000) Angew Chem Int Ed 39:3915

    Article  Google Scholar 

  13. Chen ZF, Jiao HJ, Hirsch A, Thiel W (2001) J Mol Model 7:161

    CAS  Google Scholar 

  14. Bühl M, Hirsch A (2001) Chem Rev 101:1153

    Article  Google Scholar 

  15. Chen ZF, Thiel W (2003) Chem Phys Lett 367:15

    Article  CAS  Google Scholar 

  16. Kerim A (2011) J Mol Model 17:3257

    Article  CAS  Google Scholar 

  17. Chen Z, Jiao H, Hirsch A, Thiel W (2000) Chem Phys Lett 329:47

    Article  CAS  Google Scholar 

  18. Aihara J (1976) J Am Chem Soc 98:2750

    Article  CAS  Google Scholar 

  19. Aihara J, Kanno H (2005) J Phys Chem A 109:3717

    Article  CAS  Google Scholar 

  20. Aihara J, Hosoya H (1993) Bull Chem Soc Jpn 66:1955

    Article  CAS  Google Scholar 

  21. Aihara J (2003) Bull Chem Soc Jpn 76:103

    Article  CAS  Google Scholar 

  22. Aihara J (1998) J Chem Soc Faraday Trans 94:3537

    Article  CAS  Google Scholar 

  23. Aihara J (1995) J Am Chem Soc 117:4130

    Article  CAS  Google Scholar 

  24. Xie Q, Pérez-Cordero E, Echegoyen L (1992) J Am Chem Soc 114:3978

    Article  CAS  Google Scholar 

  25. Miller GJ, Verkade JG (2003) J Math Chem 33:55

    Article  CAS  Google Scholar 

  26. Fan M, Lin Z, Yang S (1995) J Mol Struct (Theochem) 337:231

    Article  CAS  Google Scholar 

  27. Ewels CP (2006) Nano Lett 6:890

    Article  CAS  Google Scholar 

  28. Poater J, Fradera X, Duran M, Solà M (2003) Chem Eur J 9:1113

    Article  CAS  Google Scholar 

  29. Hess BA Jr, Schaad LJ (1986) J Org Chem 51:3902

    Article  CAS  Google Scholar 

  30. Manoharan M, Balakrishnarajan MM, Venuvanalingam P, Balasubramanian K (1994) Chem Phys Lett 222:95

    Article  CAS  Google Scholar 

  31. Aihara J (1995) J Phys Chem 99:12739

    Article  CAS  Google Scholar 

  32. Aihara J (2002) Chem Phys Lett 365:34

    Article  CAS  Google Scholar 

  33. Aihara J (2007) Bull Chem Soc Jpn 80:1518

    Article  CAS  Google Scholar 

  34. Aihara J (2003) Bull Chem Soc Jpn 76:1363

    Article  CAS  Google Scholar 

  35. Van Catledge FA (1980) J Org Chem 45:4801

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (No. 21262037), and by the Urumqi Science and Technology Project (No. H101133001) of the Xinjiang Uyghur Autonomous Region, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ablikim Kerim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdurishit, P., Kerim, A., Najmidin, K. et al. A study of the aromaticity of the heterofullerene C30X6 and C24X12 (X = B, N) analogs. Monatsh Chem 145, 405–409 (2014). https://doi.org/10.1007/s00706-013-1117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-013-1117-1

Keywords

Navigation