Skip to main content
Log in

Manifestation of exo-cyclic aromaticity in triangular heterocyclic \(\hbox {B}_{2}\hbox {F}_{2}\)X systems (X \(=\) O, S, Se, NH)

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Aromaticity is an important concept in chemistry which extends over a wide range of molecular systems and imparts unique features to the molecules possessing it. In the present work, novel heteroatomic molecular systems are proposed which demonstrate non-conventional aromaticity where the molecules accomplish the aromatic sextet and hence stabilization through the conjugation of \(\uppi \)-electrons from exo-cyclic substituents. A considerable \(\upsigma \)-aromaticity is also observed which does not involve the exo-cyclic atoms. At first, the stability of these molecular systems is theoretically ascertained through various density functional theory and ab-initio calculations along with the energy decomposition analysis, T1 diagnostic run, estimation of ring strain energy and highest occupied molecular orbital–lowest unoccupied molecular orbital gap which indicate towards the viability of these molecular systems. Then, a detailed study of aromaticity with the aid of different computational probes such as nucleus-independent chemical shift (NICS), dissected canonical molecular orbital-NICS analysis, multi-centre bond index (MCI), adaptive natural density partitioning and theoretical tools such as aromatic stabilization energy based on a fully ab-initio approach are performed which establish unique exo-cyclic aromaticity in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Faraday M 1825 Phil. Trans. R. Soc. Lond. 115 440

    Article  Google Scholar 

  2. Kekulé A 1865 Bull. Soc. Chim. Paris 3 98

    Google Scholar 

  3. Kekulé A 1866 Ann. Chem. Pharm. 137 129

    Article  Google Scholar 

  4. Garratt P J 1997 Aromaticity (New York: John Wiley & Sons)

  5. Minkin V I, Glukhotsev M N and Simkin B Y 1994 Aromaticity and antiaromaticity: electronic and structural aspects (New York: John Wiley & Sons Inc.)

    Google Scholar 

  6. Bickelhaupt F and de Wolf W H 1988 Recl. Trav. Chim. Pays-Bas 107 459

    Article  CAS  Google Scholar 

  7. Kraakman P A, Valk J M, Niederländer H A G, Brouwer D B E, Bickelhaupt F M, de Wolf W H et al 1990 J. Am. Chem. Soc. 112 6638

    Article  CAS  Google Scholar 

  8. Schleyer P V R and Jiao H 1996 J. Pure Appl. Chem. 68 209

    Article  CAS  Google Scholar 

  9. Schleyer P V R, Jiao H, Hommes N J R V E, Malkin V G and Malkina O L 1997 J. Am. Chem. Soc. 119 12669

  10. Poranne G P and Stranger A 1994 Magnetic and structural aspects (New York: Wiley)

    Google Scholar 

  11. Homray M, Misra A and Chattaraj P K 2017 Curr. Org. Chem. 21 2699

    CAS  Google Scholar 

  12. Katritzky A R 2004 Chem. Rev. 104 2125

    Article  CAS  Google Scholar 

  13. Aihara J I 1982 J. Pure Appl. Chem. 54 1115

    Article  CAS  Google Scholar 

  14. Graovac A, Gutman L and Trinajstic 1977 Topological approach to the chemistry of conjugated molecules (Berlin: Springer)

    Book  Google Scholar 

  15. Nyulaszi L 2001Chem. Rev. 101 1229

    Article  CAS  Google Scholar 

  16. Minkin V I and Minyaev R M 2001Chem. Rev. 101 1247

    Article  CAS  Google Scholar 

  17. Katritzky A R, Jug K and Oniciu D C 2001 Chem. Rev. 101 1421

    Article  CAS  Google Scholar 

  18. Li X, Kuznetsov A, Zhang H, Boldyrev A I and Wang L 2001 Science 291 859

    Article  CAS  Google Scholar 

  19. Kuznetsov A E, Birch K A, Boldyrev A I, Li X, Zhai H and Wang L 2003 Science 300 622

    Article  CAS  Google Scholar 

  20. Boldyrev A I and Wang L 2005 Chem. Rev. 105 3716

    Article  CAS  Google Scholar 

  21. Paul S and Misra A 2011 Inorg. Chem. 50 3234

    Article  CAS  Google Scholar 

  22. Chattaraj P K, Roy D R and Duley S 2008 Chem. Phys. Lett. 460 382

    Article  CAS  Google Scholar 

  23. Huckel E 1931 Z. Phys. 70 204

    Article  CAS  Google Scholar 

  24. Hehre W J, Radom L, Schleyer P V R and Pople J A 1986 Ab initio molecular orbital theory (New York: Wiley)

    Google Scholar 

  25. Xie Y, Schaefer III H F and Thrasher J S 1991 J. Mol. Struct. Theochem. 234 247

    Article  Google Scholar 

  26. Shaik S, Shurki A, Danovich D and Hiberty P C 1997 J. Mol. Struct. Theochem. 39 155

    Article  Google Scholar 

  27. Krygowski T M and Cyraski M K 2001 Chem. Rev. 101 1385

    Article  CAS  Google Scholar 

  28. Poater J, Duran M, Solà M and Silvi B 2005 Chem. Rev. 105 3911

    Article  CAS  Google Scholar 

  29. Cyraski M K 2005 Chem. Rev. 105 3773

    Article  Google Scholar 

  30. Matito E, Duran M and Solà M 2005 J. Chem. Phys. 122 014109

    Article  Google Scholar 

  31. Bultinck P, Ponec R and Van Damme S 2005 J. Phys. Org. Chem. 18 706

    Article  CAS  Google Scholar 

  32. Feixas F, Matito E, Poater J and Solà M 2008 J. Comput. Chem. 29 1543

    Article  CAS  Google Scholar 

  33. Roy D R, Bultinck P, Subramanium V and Chattaraj P K 2008 J. Mol. Struct. 854 35

    Article  CAS  Google Scholar 

  34. Feixas F, Matito E, Poater J and Solà M 2015 Chem. Soc. Rev. 44 6434

    Article  CAS  Google Scholar 

  35. Misra A, Klein D J and Morikawa T 2009 J. Phys. Chem. A 113 1151

    Article  CAS  Google Scholar 

  36. Clar E 1970 The aromatic sextet (New York: Wiley & Sons)

    Google Scholar 

  37. Misra A, Schmalz T G and Klein D J 2009 J. Chem. Inf. Model. 49 2670

    Article  CAS  Google Scholar 

  38. Bhattacharya D, Panda A, Misra A and Klein D J 2014 J. Phys. Chem. A 118 4325

    Article  CAS  Google Scholar 

  39. Gund P 1972 J. Chem. Educ. 49 100

    Article  CAS  Google Scholar 

  40. Goswami T, Homray M, Paul S, Bhattacharya D and Misra A 2017 Phys. Chem. Chem. Phys. 19 11744

    Article  CAS  Google Scholar 

  41. Gutowsky H S and McCall D W 1953 J. Phys. Chem. 21 279

    Article  CAS  Google Scholar 

  42. Onak T P, Landesman H, Williams R E and Shapiro I 1959 Paper presented to the Division of Inorganic Chemistry, 135th National Meeting of the American Chemical Society, Boston, Mass., 1959

  43. Cotton F A and Wilkinson G 1966 Advanced inorganic chemistry (London: Interscience) p 256

  44. Olah G A, Mo Y K and Halpern Y 1972 J. Am. Chem. Soc. 94 3551

    Article  CAS  Google Scholar 

  45. Ziegler T and Rauk A 1977 Theor. Chim. Acta 46 1

    Article  CAS  Google Scholar 

  46. Bader R F W 1990 Atoms in molecules: a quantum theory (Oxford, UK: Oxford University Press)

    Google Scholar 

  47. Schleyer P V R, Maerke C, Dransfeld A, Jiao H and Hommes N J R V E 1996 J. Am. Chem. Soc. 118 6317

    Article  CAS  Google Scholar 

  48. Heine T, Schleyer P V R, Corminboeuf C, Seifert G, Reviakine R and Weber J 2003 J. Phys. Chem. A 107 6470

    Article  CAS  Google Scholar 

  49. Zubarev D Y and Boldyrev A I 2008 Phys. Chem. Chem. Phys. 10 5207

    Article  CAS  Google Scholar 

  50. Paul S, Goswami T and Misra A 2015 AIP Adv. 5 107211

    Article  Google Scholar 

  51. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2009 Gaussian 09, Revision B.01 (Wallingford, CT: Gaussian Inc.)

  52. Amsterdam Density Functional (Theoretical Chemistry, Vrije Universitiet, Amsterdam, The Netherlands, http://www.scm.com)

  53. AIMAll (version 17.01.25), Todd A K 2017 TK Gristmill Software, Overland Park KS, USA

  54. Lu T and Chen F 2012 J. Comput. Chem. 33 580

    Article  Google Scholar 

  55. DFT Code, OPENMX, is available at http://www.openmx-square.org under the GNU General Public License

  56. Pinter B, Fievez T, Bickelhaupt F M, Geerlings P and De Proft F 2012 Phys. Chem. Chem. Phys. 14 9846

    Article  CAS  Google Scholar 

  57. Lee J T and Taylor P 1989 Int. J. Quantum Chem. 36 199

    Article  Google Scholar 

  58. Bauzá A, Quiñonero D, Deyà P M and Frontera A 2012 Chem. Phys. Lett. 536 165

    Article  Google Scholar 

  59. Cox J D and Pilcher G 1970 Thermochemistry of organic and organometallic compounds (London: Academic)

    Google Scholar 

  60. Benson S W 1976 Thermochemical kinetics (New York: Wiley)

    Google Scholar 

  61. Inagaki S, Ishitani Y and Kakefu T 1994 J. Am. Chem. Soc. 116 13

    Article  Google Scholar 

  62. Dewar M J S 1984 J. Am. Chem. Soc. 106 669

    Article  CAS  Google Scholar 

  63. Aihara J 1999 J. Phys. Chem. A 103 7487

    Article  CAS  Google Scholar 

  64. Aihara J 1999 Theor. Chem. Acc. 102 134

    Article  CAS  Google Scholar 

  65. Aihara J 1999 Phys. Chem. Chem. Phys. 1 227

    Article  Google Scholar 

  66. Parr R G and Zhou Z 1993 Acc. Chem. Res. 26 256

    Article  CAS  Google Scholar 

  67. Liu X, Schmalz T G and Klien D J 1992 Chem. Phys. Lett. 188 550

    Article  CAS  Google Scholar 

  68. Haddon R C and Fukunaga T 1980 Tetrahedron Lett. 21 1191

    Article  CAS  Google Scholar 

  69. Pearson R G 1973 Hard and soft acids and bases (Stroudsburg, PA: Dowden, Hutchinson and Ross)

  70. Manolopoulos D E, May J C and Down S E 1991 Chem. Phys. Lett. 181 105

    Article  CAS  Google Scholar 

  71. Hoffmann R, Schleyer P V R and Schaefer H F 2008 Angew. Chem. Int. Ed. 47 7164

    Article  Google Scholar 

  72. Katrizky A, Barczymski P, Musumarra G, Pisano D and Szafran M 1989 J. Am. Chem. Soc. 111 7

    Article  Google Scholar 

  73. Schleyer P V R, Manoharan M, Jiao H and Stahl F 2001 Org. Lett. 3 3643

    Article  CAS  Google Scholar 

  74. Chen Z, Wannere C S, Corminboeuf C, Puchta R and Schleyer P V R 2005 Chem. Rev. 105 3842

    Article  CAS  Google Scholar 

  75. London F 1937 J. Phys. Radium 8 397

    Article  CAS  Google Scholar 

  76. Cheeseman J R, Trucks G W, Keith T A and Frisch M J 1996 J. Chem. Phys. 104 5497

    Article  CAS  Google Scholar 

  77. Schreckenbach G and Ziegler T 1995 J. Phys. Chem. 99 606

    Article  CAS  Google Scholar 

  78. Schreckenbach G and Ziegler T 1998 Theor. Chem. Acc. 99 71

    Article  CAS  Google Scholar 

  79. Simkin B Y, Minkin V I and Glukhotsev M N 1993 Adv. Heterocycl. Chem. 56 304

    Google Scholar 

  80. Foster J P and Weinhold F 1980 J. Am. Chem. Soc. 102 7211

    Article  CAS  Google Scholar 

  81. Reed A E, Curtiss L A and Weinhold F 1988 Chem. Rev. 88 899

    Article  CAS  Google Scholar 

  82. Katrizky A, Barczymski P, Musumarra G, Pisano D and Szafran M 1984 J. Am. Chem. Soc. 111 7

    Article  Google Scholar 

  83. Radhakrishnan S, Anathakrishnan S J and Somanathan N 2011 Bull. Mater. Sci. 34 713

    Article  CAS  Google Scholar 

  84. Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from CSIR, India, is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Misra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1164 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homray, M., Paul, S. & Misra, A. Manifestation of exo-cyclic aromaticity in triangular heterocyclic \(\hbox {B}_{2}\hbox {F}_{2}\)X systems (X \(=\) O, S, Se, NH). Bull Mater Sci 42, 46 (2019). https://doi.org/10.1007/s12034-018-1718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1718-8

Keywords

Navigation