Skip to main content
Log in

Hydrothermal synthesis, structure, and porosity studies of coordination polymer [Na2(H2O)8Cu(pydc)2] n

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Synthesis and crystal structure of the title compound octaaquadisodium bis(pyridine-2,3-dicarboxylato-N,O,O)copper(II), [Na2(H2O)8Cu(pydc)2] n having a three-dimensional network, is reported (H2pydc = pyridine-2,3-dicarboxylic acid). The compound was prepared by the hydrothermal method. The crystal structure was solved by direct methods using single-crystal X-ray diffraction data collected at room temperature and refined by full-matrix least-squares procedures to a final R value of 0.0318 for 1,911 observed reflections. The compound has distorted octahedral geometry about the copper center due to Jahn–Teller distortion. The copper(II) is bonded to four symmetry-related quinolinate groups: two of them coordinate equatorially in a bidentate fashion through their nitrogen atom and one oxygen, O(1), from the 2-carboxylate group. The axial sites are provided by the other two carboxylates, through the oxygen atoms O(4) from the remaining 3-carboxylate group. Each pyridine-2,3-dicarboxylate (pydc) bridges copper(II) with sodium metal ion in a bidentate bridging mode of carboxylate group at 2-position of pydc. Each pydc also binds two different copper centers, which leads to the formation of a three-dimensional (3D) coordination polymer network. Two sodium ions are bridged through two water molecules and bonded to three more terminal water molecules. Hydrogen-bonding interaction involving water molecules and carboxylate groups strengthens the 3D network formed by the coordination polymer. The coordination polymer has a microporous structure, as is evident from the Brunauer–Emmett–Teller (BET) surface area of 5.42 m2/g.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Noro S-I, Kitagawa S, Akutagawa T, Nakamura T (2009) Prog Polym Sci 34:240

    Article  CAS  Google Scholar 

  2. Morsali A, Masoomi MY (2009) Coord Chem Rev 253:1882

    Article  CAS  Google Scholar 

  3. Hu M-L, Morsali A, Aboutorabi L (2011) Coord Chem Rev 255:2821

    Article  CAS  Google Scholar 

  4. Akhbari K, Morsali A (2010) Coord Chem Rev 254:1977

    Article  CAS  Google Scholar 

  5. Zaworotko MJ (2010) New J Chem 34:2355

    Article  CAS  Google Scholar 

  6. Safarifard V, Morsali A (2012) Ultrason Sonochem 19:823

    Article  CAS  Google Scholar 

  7. Morsali A, Abedini J (2005) Inorg Chem Commun 8:460

    Article  CAS  Google Scholar 

  8. Davidovich RL, Stavila V, Whitmire KH (2010) Coord Chem Rev 254:2193

    Article  CAS  Google Scholar 

  9. Kitagawa S, Kitaura R, Noro S-I (2004) Angew Chem Int Ed 43:2334

    Article  CAS  Google Scholar 

  10. Janiak C (2003) Dalton Trans 14:2781

    Article  Google Scholar 

  11. James SL (2003) Chem Soc Rev 32:276

    Article  CAS  Google Scholar 

  12. Biradha K, Su C-Y, Vittal JJ (2011) Cryst Growth Des 11:875

    Article  CAS  Google Scholar 

  13. Kole GK, Koh LL, Lee SY, Lee SS, Vittal JJ (2010) Chem Commun 46:3660

    Article  CAS  Google Scholar 

  14. Carlucci L, Ciani G, Proserpio D (2003) Coord Chem Rev 246:247

    Article  CAS  Google Scholar 

  15. Xue L, Luo F, Che Y, Zheng J (2007) J Mol Struct 832:132

    Article  CAS  Google Scholar 

  16. Zhao Y, Su Z, Wang Y, Fu Y, Liu S, Li P (2007) Inorg Chem Commun 10:410

    Article  CAS  Google Scholar 

  17. Chae HK, Siberio-Prrez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM (2004) Nature 427:523

    Article  CAS  Google Scholar 

  18. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Nature 423:705

    Article  CAS  Google Scholar 

  19. Uemura T, Yanai N, Kitagawa S (2009) Chem Soc Rev 38:1228

    Article  CAS  Google Scholar 

  20. Ferey G (2008) Chem Soc Rev 37:191

    Article  CAS  Google Scholar 

  21. Kepert CJ (2006) Chem Commun 695

  22. Zhao B, Cheng P, Dai Y, Cheng C, Liao DZ, Yan SP, Jiang ZH, Wang JL (2003) Angew Chem Int Ed 42:934

    Article  CAS  Google Scholar 

  23. Tong ML, Wang JS, Hu J (2005) Solid State Chem 178:1518

    Article  CAS  Google Scholar 

  24. Zhao B, Guo HL, Cheng XL, Cheng P, Shi W, Liao DZ, Yan SP, Jiang ZH (2006) Chem Eur J 12:149

    Article  CAS  Google Scholar 

  25. Guo HL, Ding B, Yi L, Cheng P, Liao DZ, Yan SP, Jiang ZH (2005) Inorg Chem Commun 8:151

    Article  Google Scholar 

  26. MacDonald JC, Luo TJM, Palmore GTR (2004) Cryst Growth Des 4:1203

    Article  CAS  Google Scholar 

  27. Cui SX, Zhao YL, Zhang JP, Liu Q, Zhang Y (2008) Cryst Growth Des 8:3803

    Article  CAS  Google Scholar 

  28. Liu MS, Yu QY, Cai YP, Su CY, Lin XM, Zhou XX, Cai JW (2008) Cryst Growth Des 8:4083

    Article  CAS  Google Scholar 

  29. Chen W, Yuan H-M, Wang JY, Liu ZY, Xu JJ, Yang M, Chen JS (2003) J Am Chem Soc 125:9266

    Article  CAS  Google Scholar 

  30. Zaworotko MJ (2001) Chem Commun 1

  31. Cotton FA, Lin C, Murillo CA (2001) Acc Chem Res 34:759

    Article  CAS  Google Scholar 

  32. Armstrong DR, Clegg W, Drummond AM, Liddle ST, Mulvey RE (2000) J Am Chem Soc 122:11117

    Article  CAS  Google Scholar 

  33. Constable EC, Housecroft CE, Kariuki BM, Kelly N, Smith CB (2001) Chem Commun 2134

  34. Wendeler M, Fattah J, Twyman JM, Edwards AJ, Dobson CM, Heyes SJ, Prout K (1997) J Am Chem Soc 119:9793

    Article  CAS  Google Scholar 

  35. Chadwick S, Ruhlandt-Senge K (1998) Chem Eur J 4:1768

    Article  CAS  Google Scholar 

  36. Edema JJH, Gambarotta S, Smeets WJJ, Spek AL (1991) Inorg Chem 30:1380

    Article  CAS  Google Scholar 

  37. Ma C, Zhang W, Wang X, Jiang D (1997) Acta Chim Sinica 55:539

    CAS  Google Scholar 

  38. Casellato U, Tamburini S, Tomasin P, Vigato PA, Aime S, Barge A, Botta M (2000) Chem Commun 145

  39. Sanotra S, Gupta R, Sheikh HN, Kalsotra BL, Gupta VK, Rajnikant (2012) Acta Cryst B68:619

  40. Gupta R, Sanotra S, Sheikh HN, Kalsotra BL, Gupta VK, Rajnikant (2012) J Coord Chem 65:3917

    Google Scholar 

  41. Sanotra S, Gupta R, Khajuria S, Sheikh HN, Kalsotra BL (2013) J Inorg Organomet Polym 23:897

    Article  CAS  Google Scholar 

  42. Deacon GB, Phillips RJ (1980) Coord Chem Rev 33:227

    Article  CAS  Google Scholar 

  43. Feng LS, Chen Z, Zeller M, Luck RL (2013) Inorg Chim Acta 394:729

    Article  CAS  Google Scholar 

  44. Sing K, Everett D, Haul R, Moscou L, Pierotti R, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  45. Gelb LD, Gubbins KE, Radhakrishnan R, Sliwinska Bartkowiak M (1999) Rep Prog Phys 62:1573

    Article  CAS  Google Scholar 

  46. Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterisation of porous solid and powders: surface area, pore size and density. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  47. Sheldrick GM (2008) Acta Cryst A64:112

    Article  Google Scholar 

  48. Brandenburg K (1998) DIAMOND, version 2.1. Crystal Impact GbR, Bonn, Germany

Download references

Acknowledgments

We gratefully acknowledge the financial support from DRDO, New Delhi. We thank SAIF, All India Institute of Medical Sciences, New Delhi, for the electron microscope facility and Sophisticated Analytical Instrumentation Facility, CIL and UCIM, Panjab University for FT-IR study. We also thank DMSRDE Kanpur for thermal study. One of the authors (Rajnikant) acknowledges the Department of Science and Technology for the single-crystal X-ray diffractometer as a National Facility under Project No. SR/S2/CMP-47/2003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haq N. Sheikh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 610 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanotra, S., Gupta, R., Khajuria, S. et al. Hydrothermal synthesis, structure, and porosity studies of coordination polymer [Na2(H2O)8Cu(pydc)2] n . Monatsh Chem 145, 447–455 (2014). https://doi.org/10.1007/s00706-013-1092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-013-1092-6

Keywords

Navigation