Skip to main content
Log in

Enhancement of the solubility, thermal stability, and electronic properties of carbon nanotubes functionalized with MEH-PPV: a combined experimental and computational study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNTs) functionalized with poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (MWCNT-f-MEH-PPV) nanocomposites were successfully prepared by employing a “grafting from” approach. The content of the functionalizing MEH-PPV in the composites was observed as 76 wt.%. Compared with pristine MWCNTs (p-MWCNT), the aqueous solubility and thermal stability of the former are significantly enhanced. The effect of covalently and non-covalently functionalized nanotubes on dye-sensitized solar cell performance was also studied. Solar cells were successfully fabricated from isolated MEH-PPV, p-MWCNT/MEH-PPV, and MWCNT-f-MEH-PPV/MEH-PPV counter electrodes. The devices based on a MWCNT-f-MEH-PPV/MEH-PPV counter electrode demonstrated the best photovoltaic performance as observed by higher J SC, V OC, and fill factor (FF) values. The experimental phenomena can be explained by quantum-chemical calculations: Charge transfer from MEH-PPV oligomers to nanotubes is greater when covalently functionalized compared with non-covalently functionalized. This suggests that the improvement in the photovoltaic parameters of the cells containing covalently functionalized nanotubes results not only from the higher concentration present in the nanotube films of the counter electrode, but also from the greater electron delocalization between the oligomers and nanotubes.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  2. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Phys Rev B 46:1804

    Article  CAS  Google Scholar 

  3. Wilder JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Nature 391:59

    Article  Google Scholar 

  4. Hu LB, Hecht DS, Gruner G (2010) Chem Rev 110:5790

    Article  CAS  Google Scholar 

  5. Yakobson BI, Brabec CJ, Bernholc J (1996) Phys Rev Lett 76:2511

    Article  CAS  Google Scholar 

  6. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Science 287:637

    Article  CAS  Google Scholar 

  7. Byrne MT, Gun’ko YK (2010) Adv Mater 22:1672

    Article  CAS  Google Scholar 

  8. Lee WJ, Ramasamy E, Lee DY, Song JS (2009) ACS Appl Mater Interfaces 1:1145

    Article  CAS  Google Scholar 

  9. Vacca P, Nenna G, Miscioscia R, Palumbo D, Minarini C, Sala DD (2009) J Phys Chem C 113:5777

    Article  CAS  Google Scholar 

  10. Coleman JN, Khan U, Gun’ko YK (2006) Adv Mater 18:689

    Article  CAS  Google Scholar 

  11. Ferrer-Anglada N, Gomis V, El-Hachemi Z, Weglikovska UD, Kaempgen M, Roth S (2006) Phys Status Solidi A 203:1082

    Article  CAS  Google Scholar 

  12. Dillon AC (2010) Chem Rev 110:6856

    Article  CAS  Google Scholar 

  13. Rowell MW, Topinka MA, McGehee MD, Prall HJ, Dennler G, Sariciftci NS, Hu LB, Gruner G (2006) Appl Phys Lett 88:233506

    Article  Google Scholar 

  14. Karousis N, Tagmatarchis N, Tasis D (2010) Chem Rev 110:5366

    Article  CAS  Google Scholar 

  15. Hong CY, You YZ, Wu D, Liu Y, Pan CY (2005) Macromolecules 38:2606

    Article  CAS  Google Scholar 

  16. Gao Y, Song G, Adronov A, Li H (2010) J Phys Chem C 114:16242

    Article  CAS  Google Scholar 

  17. Kalinina I, Worsley K, Lugo C, Mandal S, Bekyarova E, Haddon RC (2011) Chem Mater 23:1246

    Article  CAS  Google Scholar 

  18. Yoon JT, Jeong YG, Lee SC, Min BG (2009) Polym Adv Tech 20:631

    Article  CAS  Google Scholar 

  19. De S, Lyons PE, Sorel S, Doherty EM, King PJ, Blau WJ, Nirmalraj PN, Boland JJ, Scardaci V, Joimel J, Coleman JN (2009) ACS Nano 3:714

    Article  CAS  Google Scholar 

  20. Yun DJ, Hong K, Kim SH, Yun WM, Jang JY, Kwon WS, Park CE, Rhee SW (2011) ACS Appl Mater Interfaces 3:43

    Article  CAS  Google Scholar 

  21. O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Chem Phys Lett 342:265

    Article  Google Scholar 

  22. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105

    Article  CAS  Google Scholar 

  23. Wang L, Liu Y, Jiang X, Qin D, Cao Y (2007) J Phys Chem C 111:9538

    Article  CAS  Google Scholar 

  24. Verma D, Ranga Rao A, Dutta V (2009) Sol Energy Mater Sol Cells 93:1482

    Article  CAS  Google Scholar 

  25. Inpor K, Meeyoo V, Thanachayanont C (2011) Curr Appl Phys 11:S171

    Article  Google Scholar 

  26. Nan YX, Chen F, Yang LG, Jiang XX, Zuo LJ, Zhang JL, Yan QX, Shi MM, Chen HZ (2011) Sol Energy Mater Sol Cells 95:3233

    Article  CAS  Google Scholar 

  27. Alam MM, Jenekhe SA (2004) Chem Mater 16:4647

    Article  CAS  Google Scholar 

  28. Collison CJ, Pellizzeri S, Ambrosio F (2009) J Phys Chem B 113:5809

    Article  CAS  Google Scholar 

  29. Lin CS, Zhang RQ, Niehaus TA, Frauenheim T (2007) J Phys Chem C 111:4069

    Article  CAS  Google Scholar 

  30. Lu J, Nagase S, Zhang XW, Wang D, Ni M, Maeda Y, Wakahara T, Nakahodo T, Tsuchiya T, Akasaka T, Gao ZX, Yu DP, Ye HQ, Mei WN, Zhou YS (2006) J Am Chem Soc 128:5114

    Article  CAS  Google Scholar 

  31. Zhao JX, Ding YH (2008) J Phys Chem C 112:13141

    Article  CAS  Google Scholar 

  32. Neef CJ, Ferraris JP (2004) Macromolecules 37:2671

    Article  CAS  Google Scholar 

  33. Saito R, Dresselhaus G, Dresselhaus MS (2000) Phys Rev B 61:2981

    Article  CAS  Google Scholar 

  34. Martin SJ, Mellor H, Bradley DDC, Burn PL (1998) Opt Mater 9:88

    Article  CAS  Google Scholar 

  35. Chou HL, Lin KF, Wang DC (2006) J Polym Res 13:79

    Article  CAS  Google Scholar 

  36. O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Science 297:593

    Article  Google Scholar 

  37. Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J (2002) Macromol Rapid Commun 23:761

    Article  CAS  Google Scholar 

  38. Huang Z, Liu X, Li K, Li D, Luo Y, Li H, Song W, Chen L, Meng Q (2007) Electrochem Commun 9:596

    Article  CAS  Google Scholar 

  39. Kong J, Cassell AM, Dai H (1998) Chem Phys Lett 292:567

    Article  CAS  Google Scholar 

  40. Li Z, Ye B, Hu X, Ma X, Zhang X, Deng Y (2009) Electrochem Commun 11:1768

    Article  CAS  Google Scholar 

  41. Liu MH, Zhu T, Li ZC, Liu ZF (2009) J Phys Chem C 113:9670

    Article  CAS  Google Scholar 

  42. Eitan A, Jiang KY, Dukes D, Andrews R, Schadler LS (2003) Chem Mater 15:3198

    Article  CAS  Google Scholar 

  43. Mitsuke K, Bashyal D, Nakajima K (2011) In: Pattanprateeb P (ed) Proceedings of the pure and applied chemistry international conference (PACCON), Srinakharinwirot University, Bangkok, Thailand, p 457

  44. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  45. Delley B (1996) J Phys Chem 100:6107

    Article  CAS  Google Scholar 

  46. Delley B (2000) J Chem Phys 113:7756

    Article  CAS  Google Scholar 

  47. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  48. Inada Y, Orita H (2008) J Comput Chem 29:225

    Article  CAS  Google Scholar 

  49. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Thailand Research Fund (TRF) through a Senior Research Scholar (RTA5380010). P.P. is grateful to the Development and Promotion of Science and Technology Talents (DPST) project for a scholarship and S.S. to the Thailand Research Fund (MRG5480273) for financial support. We also acknowledge the Laboratory for Computational and Applied Chemistry (LCAC) at Kasetsart University (KU), Kasetsart University Research and Development Institute (KURDI), Large Simulations Research Laboratory (NECTEC), and National Nanotechnology Center (NANOTEC) for software and research facilities. A part of this work was conducted under projects of the National Research University (NRU) and National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials (NCEPPAM) promoted by the Commission on Higher Education, Ministry of Education, Thailand. We are grateful to Prof. Toshi Nagata (Institute for Molecular Science, Okazaki, Japan) for his permission to use the cyclic voltammetry (CV) instrument and valuable discussion on the CV results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supa Hannongbua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prajongtat, P., Suramitr, S., Gleeson, M.P. et al. Enhancement of the solubility, thermal stability, and electronic properties of carbon nanotubes functionalized with MEH-PPV: a combined experimental and computational study. Monatsh Chem 144, 925–935 (2013). https://doi.org/10.1007/s00706-013-0963-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-013-0963-1

Keywords

Navigation