Skip to main content
Log in

Excited-state deactivation of the monohydrated complexes of cytosine, uracil, and thymine through S0/S1 conical intersections

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The nucleobases cytosine, uracil, and thymine and their H-bonded complexes with one molecule of water were studied at the CC2/aug-cc-pVDZ level of theory. The excited-state deactivation mechanisms through the conical intersections S0/S1 were investigated. It was found that the 1ππ* excited states of cytosine, the hydroxy tautomer of uracil, and the hydroxy tautomer of thymine relax non-radiatively to the ground state S0. However, only monohydrated and anhydrous thymine do not have energy barriers of the 1ππ* excited-state reaction paths. The photophysical reaction of monohydrated thymine could proceed in two directions on the S0 surface.

Graphical abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Callis PR (1983) Annu Rev Phys Chem 34:329

    Article  CAS  Google Scholar 

  2. Daniels MH, Hauswirth WW (1971) Science 171:675

    Article  CAS  Google Scholar 

  3. Reuther AR, Iglev H, Laenen R, Laubereau A (2000) Chem Phys Lett 325:260

    Article  Google Scholar 

  4. Crespo-Hernandez CE, Cohen B, Hare PM, Kohler B (2004) Chem Rev 104:1977

    Article  CAS  Google Scholar 

  5. Spencer M (1959) Acta Crystallogr 12:59

    Article  CAS  Google Scholar 

  6. Jeffrey GA, Kinoshita Y (1963) Acta Crystallogr 16:20

    Article  CAS  Google Scholar 

  7. Parry GS (1954) Acta Crystallogr 7:313

    Article  CAS  Google Scholar 

  8. Furberg S, Hordvik A (1956) Acta Chem Scand 10:135

    Article  CAS  Google Scholar 

  9. Zaloudek F, Novros JS, Clark LB (1985) J Am Chem Soc 107:7344

    Article  CAS  Google Scholar 

  10. Voet D, Gratzer WB, Cox RA, Doty P (1963) Biopolymers 1:193

    Article  CAS  Google Scholar 

  11. Clark LB, Tinoco I (1965) J Am Chem Soc 87:11

    Article  CAS  Google Scholar 

  12. Yamada T, Fukutome H (1968) Biopolymers 6:43

    Article  CAS  Google Scholar 

  13. Johnson WC Jr, Vipond PM, Girod JC (1971) Biopolymers 10:923

    Article  CAS  Google Scholar 

  14. Kaito A, Hatano M, Ueda T, Shibuya S (1980) Bull Chem Soc Jpn 53:3073

    Article  CAS  Google Scholar 

  15. Raksany K, Foldvary I (1978) Biopolymers 17:887

    Article  Google Scholar 

  16. Shukla MK, Leszczynski J (2007) J Biomol Struct Din 25:93

    CAS  Google Scholar 

  17. Canuel C, Mons M, Piuzzi F, Tardivel B, Dimicoli I, Elhanine M (2005) J Chem Phys 122:074316

    Article  Google Scholar 

  18. Delchev VB, Sobolewski AL, Domcke W (2010) Phys Chem Chem Phys 12:5007

    Article  CAS  Google Scholar 

  19. Matsika S (2004) J Phys Chem A 108:7584

    Article  CAS  Google Scholar 

  20. Matsika S (2005) J Phys Chem A 109:7538

    Article  CAS  Google Scholar 

  21. Epifanovsky E, Kowalski K, Fan P-D, Valiev M, Matsika S, Krylov AI (2008) J Phys Chem A 112:9983

    Article  CAS  Google Scholar 

  22. Delchev VB (2010) Monatsh Chem 142:251

    Article  Google Scholar 

  23. Morita H, Nagakura S (1968) Theoret Chim Acta 11:279

    Article  CAS  Google Scholar 

  24. Shukla MK, Leszczynksi J (2008) Radiation induced molecular phenomena in nucleic acids. Springer Berlin

  25. Kistler KA, Matsika S (2009) J Chem Phys 128:215102

    Article  Google Scholar 

  26. Chmura B, Rode M, Sobolewski A, Lapinski L, Nowak M (2008) J Phys Chem A 112:13655

    Article  CAS  Google Scholar 

  27. Sobolewski AL (1993) Chem Phys Lett 211:293

    Article  CAS  Google Scholar 

  28. Marian CM, Schneider F, Kleinschmidt M, Tatchen J (2002) Eur Phys J D 20:357

    Article  CAS  Google Scholar 

  29. Ahlrichs R, Baer M, Haeser M, Horn H, Koelmel C (1989) Chem Phys Lett 162:165

    Article  CAS  Google Scholar 

  30. Hättig C, Weigend F (2000) J Chem Phys 113:5154

    Article  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.01, Gaussian, Inc, Wallingford

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassil B. Delchev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shterev, I.G., Delchev, V.B. Excited-state deactivation of the monohydrated complexes of cytosine, uracil, and thymine through S0/S1 conical intersections. Monatsh Chem 143, 763–770 (2012). https://doi.org/10.1007/s00706-012-0720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-012-0720-x

Keywords

Navigation