Skip to main content
Log in

Probing the DNA-binding behavior of tryptophan incorporating mixed-ligand complexes

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Mixed-ligand Cu(II), Ni(II), Co(II), and Zn(II) complexes using a tryptophan-derived Schiff base (obtained by the condensation of tryptophan and benzaldehyde) as the primary ligand and 1,10-phenanthroline as the co-ligand were synthesized and characterized analytically and spectroscopically by performing elemental analyses, magnetic susceptibility and molar conductance measurements, UV-Vis, IR, NMR, and FAB-MS. The binding properties of metal complexes with DNA were investigated by electronic absorption spectroscopy, cyclic voltammetry, and by performing viscosity measurements, and the results showed that these complexes have the ability to interact with DNA via an intercalative mode. The DNA cleavage efficiencies of these complexes with pUC19 DNA were investigated by gel electrophoresis. The complexes were found to promote the cleavage of pUC19 DNA from the supercoiled form I to the open circular form II and the linear form III in the presence of ascorbic acid. Finally, the in vitro antibacterial activities of the Schiff base and its mixed-ligand metal complexes were screened against the bacteria Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhi. The antibacterial screening data revealed that the complexes show growth inhibitory activity against bacteria.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jain S, Longia S, Ramnani VK (2009) People’s J Sci Res 2:37

    Google Scholar 

  2. Berthon G, Blais MJ, Piktas M, Houngbossa K (1984) J Inorg Biochem 20:113

    Article  CAS  Google Scholar 

  3. Kiss T, Gergely A (1985) J Inorg Biochem 25:247

    Article  CAS  Google Scholar 

  4. Hinojosa M, Ortiz R, Perello L, Borras J (1987) J Inorg Biochem 29:119

    Article  Google Scholar 

  5. Manjul V, Chakraborty D, Bhattacharya PK (1990) Indian J Chem A 29:577

    Google Scholar 

  6. Chakraborty D, Bhattacharya PK (1990) J Inorg Biochem 39:1

    Article  CAS  Google Scholar 

  7. Padmavathi M, Satyanarayana S (1997) Indian J Chem A 36:1001

    Google Scholar 

  8. Ceakor S, Biceer E, Ceakor O (2000) Electrochem Commun 2:124

    Article  Google Scholar 

  9. Lau S, Sarkar B (1975) Can J Chem 53:710

    Article  CAS  Google Scholar 

  10. Shahabadi N, Kashanian S, Darabi F (2010) Eur J Med Chem 45:4239

    Article  CAS  Google Scholar 

  11. Xiong Y, Ji LN (1999) Coord Chem Rev 185:711

    Article  Google Scholar 

  12. Sigman DS, Mazumder A, Perrin DM (1993) Chem Rev 93:2295

    Article  CAS  Google Scholar 

  13. Boon EM, Barton JK, Pradeepkumar PI, Isaksson J, Petit C, Chattopadhyaya J (2002) Angew Chem Int Ed 41:3402

    Article  CAS  Google Scholar 

  14. Metcalfe C, Thomas JA (2003) Chem Soc Rev 32:215

    Article  CAS  Google Scholar 

  15. Sathyaraj G, Weyhermuller T, Unni Nair B (2010) Eur J Med Chem 45:284

    Article  CAS  Google Scholar 

  16. Kaur S, Modi NH, Panda D, Roy N (2010) Eur J Med Chem 45:4209

    Article  CAS  Google Scholar 

  17. Raman N, Sobha S, Thamaraichelvan A (2011) Spectrochim Acta Part A 78:888

    Article  CAS  Google Scholar 

  18. Raman N, Thalamuthu S, Dhaveethuraja J, Neelakandan MA, Banerjee S (2008) J Chil Chem Soc 53:1439

    Google Scholar 

  19. Colak A, Terzi U, Col M, Karaoglu SA, Karabocek S, Kucukdumlu A, Ayaz FA (2010) Eur J Med Chem 45:5169

    Article  CAS  Google Scholar 

  20. Lepecp JB, Paoletti C (1967) J Mol Biol 27:87

    Article  Google Scholar 

  21. Satyanarayana S, Dabrowiak JC, Chaires JB (1993) Biochemistry 32:2573

    Article  CAS  Google Scholar 

  22. Ni Y, Lin D, Kokat S (2006) Anal Biochem 352:23

    Article  Google Scholar 

  23. Cheng K, Zheng Q-Z, Hou J, Zhou Y, Liu C-H, Zhao J, Zhu H-L (2010) Bioorg Med Chem 18:2447

    Article  CAS  Google Scholar 

  24. Ramesh R, Maheswaran S (2003) J Inorg Biochem 96:457

    Article  CAS  Google Scholar 

  25. Marmur J (1961) J Mol Biol 3:208

    Article  CAS  Google Scholar 

  26. Wolfe A, Shimer GH, Meehan T (1987) Biochemistry 26:6392

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks to the College Managing Board, the Principal, and the Head of the Department of Chemistry, VHNSN College, Virudhunagar, India for providing the necessary research facilities. NR thanks the University Grants Commission (UGC), New Delhi for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natarajan Raman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raman, N., Sobha, S. & Selvaganapathy, M. Probing the DNA-binding behavior of tryptophan incorporating mixed-ligand complexes. Monatsh Chem 143, 1487–1495 (2012). https://doi.org/10.1007/s00706-012-0718-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-012-0718-4

Keywords

Navigation