Skip to main content
Log in

Oxygen self-diffusion in apatites

  • Review
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Apatites are a very important class of functional materials that exhibit a range of stoichiometries and crystal structures. The oxygen diffusion mechanisms and activation energies in these materials are highly influenced by the composition and crystal structure. We review recent investigations on apatites with a focus on their self-diffusion properties as these are important for their potential application as electrolytes in solid oxide fuel cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A (2001) Nature 414:345

    CAS  Google Scholar 

  2. Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, Amsterdam

    Google Scholar 

  3. Jacobson AJ (2010) Chem Mater 22:660

    CAS  Google Scholar 

  4. Fleig J (2003) Annu Rev Mater Res 33:361

    CAS  Google Scholar 

  5. Tarancón A, Burriel M, Santiso J, Skinner SJ, Kilner JA (2010) J Mater Chem 20:3799

    Google Scholar 

  6. Frayret C, Villesuzanne A, Pouchard M (2005) Chem Mater 17:6538

    CAS  Google Scholar 

  7. Tarancón A, Skinner SJ, Chater RJ, Hernández-Ramirez F, Kilner JA (2007) J Mater Chem 17:3175

    Google Scholar 

  8. Yashima M, Enoki M, Wakita T, Ali R, Matsushita Y, Izumi F, Ishihara T (2008) J Am Chem Soc 130:2762

    CAS  Google Scholar 

  9. Rupasov D, Chroneos A, Parfitt D, Kilner JA, Grimes RW, Istomin SY, Antipov EV (2009) Phys Rev B 79:172102

    Google Scholar 

  10. Chroneos A, Vovk RV, Goulatis IL, Goulatis LI (2010) J Alloys Compds 494:190

    CAS  Google Scholar 

  11. Chroneos A, Parfitt D, Kilner JA, Grimes RW (2010) J Mater Chem 20:266

    CAS  Google Scholar 

  12. Bouwmeester HJM, Burggraaf AJ (1996) In: Burggraaf A, Cot L (eds) Fundamentals of inorganic membrane science and technology. Elsevier, Amsterdam

  13. Sammes NM, Tompsett GA, Nafe H, Aldinger F (1999) J Eur Ceram Soc 19:1801

    CAS  Google Scholar 

  14. Morgensen M, Sammes NM, Tompsett GA (2000) Solid State Ionics 129:63

    Google Scholar 

  15. Huijsmans JPP (2000) Curr Opin Solid State Mater Sci 5:317

    Google Scholar 

  16. Kilner JA, Irvine JTS (2009) In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells—advances in electrocatalysis, materials, diagnostics and durability, vol 5. Wiley, Chichester

  17. Malavasi L, Fisher CAJ, Islam MS (2010) Chem Soc Rev 39:4370

    CAS  Google Scholar 

  18. Mehrer H (2007) Diffusion in solids. Springer, Berlin

    Google Scholar 

  19. Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics. Wiley, New York

    Google Scholar 

  20. Chiang YM, Birnie D, Kingery WD (1997) Physical ceramics: principles for ceramic science and engineering. MIT Press, Cambridge

    Google Scholar 

  21. Miyoshi S, Martin M (2009) Phys Chem Chem Phys 11:3063

    CAS  Google Scholar 

  22. Parfitt D, Chroneos A, Kilner JA, Grimes RW (2010) Phys Chem Chem Phys 12:6834

    CAS  Google Scholar 

  23. Kushima A, Parfitt D, Chroneos A, Yildiz B, Kilner JA, Grimes RW (2011) Phys Chem Chem Phys 13:2242

    CAS  Google Scholar 

  24. Smith W, Forester TR (1996) J Mol Graphics 14:136

    CAS  Google Scholar 

  25. Gale JD (1997) J Chem Soc Faraday Trans 93:629

    CAS  Google Scholar 

  26. Catlow CRA (ed) (1997) Computer modelling in inorganic crystallography. Academic, San Diego

    Google Scholar 

  27. Segall MD, Lindan PJD, Probert KJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys Condens Matter 14:2717

    CAS  Google Scholar 

  28. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Google Scholar 

  29. Kohn W (1998) Rev Mod Phys 71:1253

    Google Scholar 

  30. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. Wiley-VCH, Weinheim

    Google Scholar 

  31. Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901

    CAS  Google Scholar 

  32. Born M, Mayer JE (1932) Z Phys 75:1

    CAS  Google Scholar 

  33. Ewald PP (1921) Ann Phys 64:253

    Google Scholar 

  34. Buckingham RA (1938) Proc Royal Soc Lond Ser A Math Phys Sci 168:264

    CAS  Google Scholar 

  35. Dick BG, Overhauser AW (1958) Phys Rev 112:90

    CAS  Google Scholar 

  36. Mott NF, Littleton MJ (1938) Trans Faraday Soc 34:485

    CAS  Google Scholar 

  37. Levy MR, Stanek CR, Chroneos A, Grimes RW (2007) Solid State Sci 9:588

    CAS  Google Scholar 

  38. Kendrick E, Islam MS, Slater PR (2008) Chem Commun 715

  39. Jay EE, Michie EM, Parfitt D, Rushton MJD, Fong SK, Mallinson PM, Metcalfe BL, Grimes RW (2010) J Solid State Chem 183:2261

    CAS  Google Scholar 

  40. Parfitt D, Chroneos A, Tarancon A, Kilner JA (2011) J Mater Chem 21:2183

    CAS  Google Scholar 

  41. Jolliff BL, Hughes JM, Freeman JJ, Zeigler RA (2006) Am Miner 91:1583

    CAS  Google Scholar 

  42. Hench L, Wilson J (1993) An introduction to bioceramics. World Scientific, Singapore

    Google Scholar 

  43. Foth HD, Ellis BG (1997) Soil fertility, environmental science agriculture and soils. Lewis, New York

    Google Scholar 

  44. Nakayama S, Kageyama T, Aono H, Sadaoka Y (1995) J Mater Chem 5:1801

    CAS  Google Scholar 

  45. Nakayama S, Aono H, Sadaoka Y (1995) Chem Lett 6:431

    Google Scholar 

  46. Islam MS, Tolchard JR, Slater PR (2003) Chem Commun 1486

  47. Tolchard JR, Islam MS, Slater PR (2003) J Mater Chem 13:1956

    CAS  Google Scholar 

  48. Kendrick E, Islam MS, Slater PR (2007) J Mater Chem 17:3104

    CAS  Google Scholar 

  49. Jones A, Slater PR, Islam MS (2008) Chem Mater 20:5055

    CAS  Google Scholar 

  50. Sansom JEH, Richings D, Slater PR (2001) Solid State Ion 139:205

    CAS  Google Scholar 

  51. León-Reina L, Losilla ER, Martínez-Lara M, Bruque S, Aranda MAG (2004) J Mater Chem 14:1142

    Google Scholar 

  52. León-Reina L, Porras-Vasquez JM, Losilla ER, Aranda MAG (2007) J Solid State Chem 180:1250

    Google Scholar 

  53. Sansom JEH, Tolchard JR, Apperley D, Islam MS, Slater PR (2006) J Mater Chem 16:1410

    CAS  Google Scholar 

  54. Huang K, Feng M, Goodenough JB (1998) J Am Ceram Soc 81:357

    CAS  Google Scholar 

  55. Arikawa H, Nishiguchi H, Ishihara T, Takita Y (2000) Solid State Ion 136–137:31

    Google Scholar 

  56. Ishihara T, Shibayama T, Honda M, Nishiguchi H, Takita Y (2000) J Electrochem Soc 147:1332

    CAS  Google Scholar 

  57. Takeuchi T, Kondoh I, Tamari N, Balakrishnan N, Nomura K, Kageyama H, Takeda Y (2002) J Electrochem Soc 149:A455

    CAS  Google Scholar 

  58. León-Reina L, Losilla ER, Martínez-Lara M, Martin-Sedeno MC, Bruque S, Nunez P, Sheptyakov DV, Aranda MAG (2005) Chem Mater 17:596

    Google Scholar 

  59. Pramana SS, Klooster WT, White TJ (2007) Acta Crystallogr Sect B Struct Sci 63:597

    Google Scholar 

  60. Pramana SS, Klooster WT, White TJ (2008) J Solid State Chem 181:1717

    CAS  Google Scholar 

  61. Panchmatia PM, Orera A, Kendrick E, Hanna JV, Smith ME, Slater PR, Islam MS (2010) J Mater Chem 20:2766

    CAS  Google Scholar 

  62. Kendrick E, Tolchard JR, Sansom JEH, Islam MS, Slater PR (2007) Faraday Discuss 134:181

    CAS  Google Scholar 

  63. Tolchard JR, Slater PR, Islam MS (2007) Adv Funct Mater 17:2564

    CAS  Google Scholar 

  64. Slater PR, Sansom JEH (2003) Diffus Defect Data Pt B 90–91:195

    Google Scholar 

  65. Yoshioka H (2004) Chem Lett 33:392

    CAS  Google Scholar 

  66. Kharton VV, Shaula AL, Patrakeev MV, Waerenborgh JC, Rojas DP, Vyshatko NP, Tsipis EV, Yaremchenko AA, Marques FMB (2004) J Electrochem Soc 151:A1236

    CAS  Google Scholar 

  67. Tolchard JR, Sansom JEH, Islam MS, Slater PR (2005) Dalton Trans 1273

  68. Sansom JEH, Sermon PA, Slater PR (2005) Solid State Ion 176:1765

    CAS  Google Scholar 

  69. Yoshioka H, Tanase S (2005) Solid State Ion 276:2395

    Google Scholar 

  70. Shaula AL, Kharton VV, Marques FMB (2005) J Solid State Chem 178:2050

    CAS  Google Scholar 

  71. Pivak YV, Kharton VV, Yaremchenko AA, Yakovlev SO, Kovalevsky AV, Frade JR, Marques FMB (2007) J Eur Ceram Soc 27:2445

    CAS  Google Scholar 

  72. Yoshioka H (2007) J Am Ceram Soc 90:3099

    CAS  Google Scholar 

  73. Ali R, Yashima M, Matsushita Y, Yoshioka H, Ohoyama K, Izumi F (2008) Chem Mater 20:5203

    CAS  Google Scholar 

  74. Leon-Reina L, Martin-Sedeno ME, Losilla ER, Caberza A, Martinez-Lara M, Bruque S, Marques FMB, Sheptvakov DV, Aranda MAG (2003) Chem Mater 15:2099

    CAS  Google Scholar 

  75. Kendrick E, Slater PR (2008) Mater Res Bull 43:2509

    CAS  Google Scholar 

  76. Kendrick E, Orera A, Slater PR (2009) J Mater Chem 19:7955

    CAS  Google Scholar 

  77. Orera A, Slater PR (2010) Solid State Ionics 181:110

    CAS  Google Scholar 

  78. Chroneos A, Ashley NJ, Desai KH, Maguire JF, Grimes RW (2007) J Mater Sci 42:2024

    CAS  Google Scholar 

  79. Malavasi L, Orera A, Slater PR, Panchmatia PM, Islam MS, Siewenie J (2011) Chem Commun 47:250

    CAS  Google Scholar 

  80. Abram EJ, Sinclair DC, West AR (2001) J Mater Chem 11:1978

    CAS  Google Scholar 

  81. McFarlane J, Barth S, Swaffer M, Sansom JEH, Slater PR (2002) Ionics 8:149

    CAS  Google Scholar 

  82. Sansom JEH, Hildebrandt L, Slater PR (2002) Ionics 8:155

    CAS  Google Scholar 

  83. Tolchard JR, Sansom JEH, Slater PR, Islam MS (2004) J Solid State Electrochem 8:668

    CAS  Google Scholar 

  84. Abram EJ, Kirk CA, Sinclair DC, West AR (2005) Solid State Ion 176:1941

    CAS  Google Scholar 

  85. Masubuchi Y, Higuchi M, Takeda T, Kikkawa S (2006) J Alloys Compd 408:641

    Google Scholar 

  86. Yoshioka H (2006) J Alloys Compd 408:6491

    Google Scholar 

  87. Rodriguez-Reyna E, Fuentes AF, Maczka M, Hanuza J, Boulahya K, Amador U (2006) Solid State Sci 8:168

    CAS  Google Scholar 

  88. Celerier S, Laberty-Robert C, Long JW, Pettigrew KA, Stroud RM, Rolison DR, Ansart F, Stevens P (2006) Adv Mater 18:615

    CAS  Google Scholar 

  89. Tsipis EV, Kharton VV, Frade JR (2007) Electrochim Acta 52:4428

    CAS  Google Scholar 

  90. Yoshioka H, Nojiri Y, Tanase S (2008) Solid State Ion 179:2165

    CAS  Google Scholar 

  91. Yaremchenko AA, Kharton VV, Bannikov DO, Znosak DV, Frade JR, Cherepanov VA (2009) Solid State Ion 180:878

    CAS  Google Scholar 

  92. Kendrick E, Headspith D, Orera A, Apperley DC, Smith RI, Francesconi MG, Slater PR (2009) J Mater Chem 19:749

    CAS  Google Scholar 

  93. Orera A, Slater PR (2010) Chem Mater 22:675

    CAS  Google Scholar 

  94. Kwon OH, Choi GM (2006) Solid State Ion 177:3057

    CAS  Google Scholar 

  95. Pérez-Coll D, Mather GC (2010) Solid State Ion 181:20

    Google Scholar 

  96. Feng M, Goodenough JB (1994) Eur J Solid State Inorg Chem T31:663

    Google Scholar 

  97. Goutenoire F, Isnard O, Retoux R, Lacorre P (2000) Chem Mater 12:2575

    CAS  Google Scholar 

  98. Kushima A, Yildiz B (2010) J Mater Chem 20:4809

    CAS  Google Scholar 

  99. Chroneos A, Yildiz B, Tarancon A, Parfitt D, Kilner JA (2011) Energy Environ Sci 4:2774

    CAS  Google Scholar 

  100. De Souza RA, Maier J (2003) Phys Chem Chem Phys 5:740

    Google Scholar 

  101. Chroneos A, Desai K, Redfern SE, Zacate MO, Grimes RW (2006) J Mater Sci 41:675

    CAS  Google Scholar 

  102. Chroneos A (2007) Phys Stat Sol B 244:3206

    Google Scholar 

  103. Chroneos A, Grimes RW, Bracht H (2009) J Appl Phys 105:016102

    Google Scholar 

  104. Schwingenschlögl U, Chroneos A, Schuster C, Grimes RW (2010) Appl Phys Lett 96:242107

    Google Scholar 

  105. Seymour ID, Chroneos A, Kilner JA, Grimes RW (2011) Phys Chem Chem Phys 13:15305

    CAS  Google Scholar 

  106. Chroneos A (2009) J Appl Phys 105:056101

    Google Scholar 

  107. Chroneos A (2010) J Appl Phys 107:076102

    Google Scholar 

  108. Chroneos A, Bracht H, Grimes RW, Uberuaga BP (2008) Appl Phys Lett 92:172103

    Google Scholar 

  109. Nakayama S, Sakamoto M (1998) J Eur Ceram Soc 18:1413

    CAS  Google Scholar 

  110. Lacorre P, Goutenoire F, Bohnke O, Retoux R, Laligant Y (2000) Nature 404:856

    CAS  Google Scholar 

  111. Higuchi M, Masubuchi Y, Nakayama S, Kikkawa S, Kodaira K (2004) Solid State Ion 174:73

    CAS  Google Scholar 

  112. Zhang XH, Yi X, Zhang J, Xie Z, Kang J, Zheng L (2010) Inorg Chem 49:10244

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chroneos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chroneos, A., Vovk, R.V. & Goulatis, I.L. Oxygen self-diffusion in apatites. Monatsh Chem 143, 345–353 (2012). https://doi.org/10.1007/s00706-011-0696-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0696-y

Keywords

Navigation