Skip to main content
Log in

In silico prediction of free-radical chain transfer constants for some organic agents in styrene polymerization

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In the present work, quantitative structure–reactivity relationship (QSRR) approaches were used to predict the chain transfer constant log C x of some organic compounds as chain transfer agents in free-radical polymerization of styrene. The energy of the lowest unoccupied molecular orbital, hydrogen-bonding-dependent hydrogen donor charged area, first-order Kier and Hall index, final heat of formation/number of atoms, count of H donor sites, and Min>(0.1) bond order of a C atom were selected as the most relevant variables from the pool of calculated descriptors by the stepwise multiple regression feature selection method. Then, an artificial neural network and multiple linear regressions were utilized to construct the nonlinear and linear QSRR models. The standard errors in the prediction of log C x by the linear regression model were 0.641, 0.964, and 0.843 and by the neural network model were 0.049, 0.076, and 0.090 for training, internal, and external test sets, respectively. The predictivity of the artificial neural network model was further examined by cross-validation methods, which produce a Q 2 value of 0.85. The results of this study revealed the applicability of QSRR approaches in prediction of the chain transfer constant by using an artificial neural network.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moad G, Moad CL (1996) Macromolecules 29:7727

    Article  CAS  Google Scholar 

  2. Odian G (1981) Principles of polymerization, 2nd edn. Wiley, New York

    Google Scholar 

  3. Braun D, Hempler P (1993) Polym Bull 30:55

    Article  CAS  Google Scholar 

  4. Hemmateenejad B, Sanchooli M, Mehdipour A (2009) J Phys Org Chem 22:613

    Article  CAS  Google Scholar 

  5. Carpenter BK (1978) Tetrahedron 34:1877

    Article  CAS  Google Scholar 

  6. Wilcox CF, Carpenter BK, Dolbier WR (1979) Tetrahedron 35:707

    Article  CAS  Google Scholar 

  7. Katritzky AR, Perumal S, Petrukhin R (2001) J Org Chem 66:4036

    Article  CAS  Google Scholar 

  8. Szentpaly LV, Herndon WC (1988) Adv Chem Ser 217:287

    Article  CAS  Google Scholar 

  9. Masunaga S, Wolfe NL, Carriera LH (1995) Environ Toxicol Chem 14:1827

    Article  CAS  Google Scholar 

  10. Ignatz-Hoover F, Petrukhin R, Karelson M, Katritzky AR (2001) J Chem Inf Comput Sci 41:295

    Article  CAS  Google Scholar 

  11. Maldonado AG, Doucet JP, Petitjean M, Fan BT (2006) Mol Divers 10:39

    Article  CAS  Google Scholar 

  12. Osten DW (1988) J Chemom 2:39

    Article  Google Scholar 

  13. Kraim K, Khatmi D, Saihi Y, Ferkous F, Brahimi M (2009) Chemom Intell Lab Syst 97:118

    Article  CAS  Google Scholar 

  14. Nord LI, Jacobsson SP (1998) Chemom Intell Lab Syst 44:153

    Article  CAS  Google Scholar 

  15. Luan F, Ma W, Zhang X, Zhang H, Liu M, Hu Z, Fan BT (2006) Chemosphere 63:1142

    Article  CAS  Google Scholar 

  16. Dashtbozorgi Z, Golmohammadi H (2010) Eur J Med Chem 45:2182

    Article  CAS  Google Scholar 

  17. Katritzky AR, Tatham DB (2001) J Chem Inf Comput Sci 41:1162

    Article  CAS  Google Scholar 

  18. Kier LB, Hall LH (1986) Molecular connectivity in structure-activity analysis. Wiley, New York

    Google Scholar 

  19. Fatemi MH, Karimian F (2007) J Colloid Interface Sci 314:665

    Article  CAS  Google Scholar 

  20. Li H, Ung CY, Yap CW, Xue Y, Li ZR, Chen YZ (2006) J Mol Graph Modell 25:313

    Article  CAS  Google Scholar 

  21. HyperChem Release 7.0 for windows (2002) Hypercube, Saint-Laurent

  22. Li Q, Chen X, Hu Z (2004) Chemom Intell Lab Syst 72:93

    Article  CAS  Google Scholar 

  23. Stewart JPP (1989) MOPAC ver. 6.0, Quantum chemistry program exchange, QCPE, No. 455, India University

  24. Katritsky A, Karelson M, Lobanov VS, Dennington R, Keith T (2004) CODESSA 2.7.2. Semichem, Shawnee

  25. Katritzky AR, Lobanov VS, Karelson M (2002) Comprehensive descriptors for structural and statistical analysis, Reference Manual, Version 2.0. Semichem and University of Florida, Florida

  26. Katritzky AR, Lobanov VS, Karelson M (1995) Chem Soc Rev 24:279

    Article  CAS  Google Scholar 

  27. Katritzky AR, Lobanov VS, Karelson M (1997) Pure Appl Chem 69:245

    Article  CAS  Google Scholar 

  28. Consonni V, Todeschini R (2002) Handbook of molecular descriptors. Wiley, Weinheim

    Google Scholar 

  29. Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design. Wiley, Weinheim

    Google Scholar 

  30. Bose NK, Liang P (1996) Neural network, fundamentals. McGraw-Hill, New York

    Google Scholar 

  31. Beal MT, Hagan HB, Demuth M (1996) Neural network design. PWS, Boston

    Google Scholar 

  32. Zupan J, Gasteiger J (1993) Neural networks for chemists: an introduction. VCH, Weinheim

    Google Scholar 

  33. Fatemi MH (2003) J Chromatogr A 1002:221

    Article  CAS  Google Scholar 

  34. Fatemi MH (2002) J Chromatogr A 955:273

    Article  CAS  Google Scholar 

  35. Jalali-Heravi M, Fatemi MH (2001) J Chromatogr A 915:177

    Article  CAS  Google Scholar 

  36. MATLAB version 7.0 (2004) The MathWorks http://www.mathworks.com

  37. Jalali-Heravi M, Fatemi MH (2000) Anal Chim Acta 415:95

    Article  CAS  Google Scholar 

  38. Jalali-Heravi M, Fatemi MH (2000) J Chromatogr A 897:227

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad H. Fatemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatemi, M.H., Dorostkar, F. & Ghorbannezhad, Z. In silico prediction of free-radical chain transfer constants for some organic agents in styrene polymerization. Monatsh Chem 142, 1061–1068 (2011). https://doi.org/10.1007/s00706-011-0527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0527-1

Keywords

Navigation