Skip to main content
Log in

Optimization of reaction conditions in functionalized polystyrene synthesis via ATRP by simulations and factorial design

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Atom-transfer radical polymerization (ATRP) is a powerful reversible-deactivation radical polymerization technique that provides polymers with several macromolecular architectures. Global optimization of this type of system is often difficult due to the mathematical models complexity. Based on that, the purpose of this paper is to provide a simplified optimization method to determine the best reaction conditions in bulk styrene ATRP initiated by 2,2,2-tribromoethanol. A kinetic model, with experimental validation, was used to generate the response variables in a full 23 factorial design. Thus, an easy statistic modeling was employed to optimize reaction conditions. It was also performed a traditional global dynamic optimization to prove that our approach could be accomplished without considerable errors. Finally, we demonstrated that the optimum conditions can be obtained in an easy and uncomplicated way, allowing extend it to any polymeric system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nie Z, Kumacheva E (2008) Patterning surfaces with functional polymers. Nature 7:277–290

    Article  CAS  Google Scholar 

  2. Zhao M, Zhang H, Ma F et al (2013) Efficient synthesis of monodisperse, highly crosslinked, and “living” functional polymer microspheres by the ambient temperature iniferter-induced “living” radical precipitation polymerization. J Polym Sci Part A Polym Chem 51:1983–1998. doi:10.1002/pola.26579

    Article  CAS  Google Scholar 

  3. Lessard BH, Marić M (2013) Water-soluble/dispersible carbazole-containing random and block copolymers by nitroxide-mediated radical polymerisation. Can J Chem Eng 91:618–629. doi:10.1002/cjce.21676

    Article  CAS  Google Scholar 

  4. Toloza Porras C, D’hooge DR, Van Steenberge PHM et al (2013) A theoretical exploration of the potential of ICAR ATRP for one- and two-pot synthesis of well-defined diblock copolymers. Macromol React Eng 7:311–326. doi:10.1002/mren.201200085

    Article  CAS  Google Scholar 

  5. Zhou Y-N, Li J-J, Luo Z-H (2012) Synthesis of gradient copolymers with simultaneously tailor-made chain composition distribution and glass transition temperature by semibatch ATRP: from modeling to application. J Polym Sci Part A Polym Chem 50:3052–3066. doi:10.1002/pola.26091

    Article  CAS  Google Scholar 

  6. Goldmann AS, Glassner M, Inglis AJ, Barner-Kowollik C (2013) Post-functionalization of polymers via orthogonal ligation chemistry. Macromol Rapid Commun 34:810–849. doi:10.1002/marc.201300017

    Article  CAS  Google Scholar 

  7. Salian VD, Byrne ME (2013) Living radical polymerization and molecular imprinting: improving polymer morphology in imprinted polymers. Macromol Mater Eng 298:379–390. doi:10.1002/mame.201200191

    Article  CAS  Google Scholar 

  8. Yamago S, Yamada T, Togai M et al (2009) Synthesis of structurally well-defined telechelic polymers by organostibine-mediated living radical polymerization: in situ generation of functionalized chain-transfer agents and selective omega-end-group transformations. Chemistry 15:1018–1029. doi:10.1002/chem.200801754

    Article  CAS  Google Scholar 

  9. Hardy CG, Ren L, Zhang J, Tang C (2012) Side-chain metallocene-containing polymers by living and controlled polymerizations. Isr J Chem 52:230–245. doi:10.1002/ijch.201100110

    Article  CAS  Google Scholar 

  10. Badri A, Whittaker MR, Zetterlund PB (2012) Modification of graphene/graphene oxide with polymer brushes using controlled/living radical polymerization. J Polym Sci Part A Polym Chem 50:2981–2992. doi:10.1002/pola.26094

    Article  CAS  Google Scholar 

  11. Dirany M, Lacroix-Desmazes P, Vayer M et al (2011) Polystyrene-block-polylactide obtained by the combination of atom transfer radical polymerization and ring-opening polymerization with a commercial dual initiator. J Appl Polym Sci 122:2944–2951. doi:10.1002/app

    Article  CAS  Google Scholar 

  12. Vieira RP, Ossig A, Perez JM et al (2015) Styrene ATRP using the new initiator 2,2,2-tribromoethanol: experimental and simulation approach. Polym Eng Sci 55:2270–2276. doi:10.1002/pen24113

    Article  CAS  Google Scholar 

  13. Van Steenberge PHM, D’hooge DR, Wang Y et al (2012) Linear gradient quality of ATRP copolymers. Macromolecules 45:8519–8531. doi:10.1021/ma3017597

    Article  Google Scholar 

  14. Wang L, Broadbelt LJ (2009) Explicit sequence of styrene/methyl methacrylate gradient copolymers synthesized by forced gradient copolymerization with nitroxide-mediated controlled radical polymerization. Macromolecules 42:7961–7968. doi:10.1021/ma901298h

    Article  CAS  Google Scholar 

  15. Vieira RP, Ossig A, Perez JM et al (2013) Simulation of the equilibrium constant effect on the kinetics and average properties of polystyrene obtained by ATRP. J Braz Chem Soc 24:2008–2014. doi:10.5935/0103-5053.20130251

    CAS  Google Scholar 

  16. Zhu S (1999) Modeling of molecular weight development in atom transfer radical polymerization. Macromol Theory Simul 8:29–37. doi:10.1002/(SICI)1521-3919(19990101)8:1<29:AID-MATS29>3.3.CO;2-Z

    Article  CAS  Google Scholar 

  17. D’hooge DR, Reyniers M-F, Marin GB (2009) Methodology for kinetic modeling of atom transfer radical polymerization. Macromol React Eng 3:185–209. doi:10.1002/mren.200800051

    Article  Google Scholar 

  18. Zhang M, Ray WH (2002) Modeling of living free-radical polymerization processes. I. Batch, semibatch, and continuous tank reactors. J Appl Polym Sci 86:1630–1662. doi:10.1002/app.11051

    Article  CAS  Google Scholar 

  19. Hernández-Ortiz JC, Jaramillo-Soto G, Palacios-Alquisira J, Vivaldo-Lima E (2010) Modeling of polymerization kinetics and molecular weight development in the microwave-activated RAFT polymerization of styrene. Macromol React Eng 4:210–221. doi:10.1002/mren.200900047

    Article  Google Scholar 

  20. Berkenwald E, Spies C, Cortez JRC et al (2013) Mathematical model for the bulk polymerization of styrene using the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide. I. Chemical initiation by sequential decomposition. J Appl Polym Sci 128:776–786. doi:10.1002/app.38221

    Article  CAS  Google Scholar 

  21. Ray WH (1972) On the mathematical modeling of polymerization reactors. J Macromol Sci Part C Polym Rev 8:1–56. doi:10.1080/15321797208068168

    Article  CAS  Google Scholar 

  22. Konkolewicz D, Matyjaszewski K (2015) Catalyst activity in ATRP, determining conditions for well-controlled polymerizations. In: Matyjaszewski K, Sumerlin BS, Tsarevsky NV, Chiefari J (eds) ACS symposium series. American Chemical Society, Washington, pp 87–103

    Google Scholar 

  23. Hindmarsh AC (1983) ODEPACK, A systematized collection of ODE solvers. Sci Comput 1:55–64

    Google Scholar 

  24. Zapata-González I, Saldívar-Guerra E, Flores-Tlacuahuac A et al (2012) Efficient numerical integration of stiff differential equations in polymerisation reaction engineering: computational aspects and applications. Can J Chem Eng 90:804–823. doi:10.1002/cjce.21656

    Article  Google Scholar 

  25. Shipp DA, Matyjaszewski K (1999) Kinetic analysis of controlled/“living” radical polymerizations by simulations. 1. The importance of diffusion-controlled reactions. Macromolecules 32:2948–2955. doi:10.1021/ma9819135

    Article  CAS  Google Scholar 

  26. Konkolewicz D, Krys P, Matyjaszewski K (2014) Explaining unexpected data via competitive equilibria and processes in radical reactions with reversible deactivation. Acc Chem Res 47:3028–3036. doi:10.1021/ar500199u

    Article  CAS  Google Scholar 

  27. D’hooge DR, Reyniers M-F, Marin GB (2013) The crucial role of diffusional limitations in controlled radical polymerization. Macromol React Eng 7:362–379. doi:10.1002/mren.201300006

    Article  Google Scholar 

  28. Fu Y, Mirzaei A, Cunningham MF, Hutchinson RA (2007) Atom-transfer radical batch and semibatch polymerization of styrene. Macromol React Eng 1:425–439. doi:10.1002/mren.200700010

    Article  CAS  Google Scholar 

  29. Belincanta-Ximenes J, Mesa PVR, Lona LMF et al (2007) Simulation of styrene polymerization by monomolecular and bimolecular nitroxide-mediated radical processes over a range of reaction conditions. Macromol Theory Simul 16:194–208. doi:10.1002/mats.200600063

    Article  CAS  Google Scholar 

  30. Hui AW, Hamielec AE (1972) Thermal polymerization of styrene at high conversions and temperatures. An experimental study. J Appl Polym Sci 16:749–769

    Article  CAS  Google Scholar 

  31. Fischer H, Paul H (1987) Rate constants for some prototype radical reactions in liquids by kinetic electron spin resonance. Acc Chem Res 20:200–206

    Article  CAS  Google Scholar 

  32. Tang W, Matyjaszewski K (2007) Effects of initiator structure on activation rate constants in ATRP. Macromolecules 40:1858–1863. doi:10.1021/ma062897b

    Article  CAS  Google Scholar 

  33. Toloza Porras C, D’hooge DR, Reyniers M-F, Marin GB (2013) Computer-aided optimization of conditions for fast and controlled ICAR ATRP of n-butyl acrylate. Macromol Theory Simul 22:136–149. doi:10.1002/mats.201200074

    Article  CAS  Google Scholar 

  34. Singh P, Srivastava A, Kumar R (2012) Synthesis of amphiphilic poly(N-vinylcaprolactam) using ATRP protocol and antibacterial study of its silver nanocomposite. J Polym Sci Part A Polym Chem 50:1503–1514. doi:10.1002/pola.25911

    Article  CAS  Google Scholar 

  35. Seeliger F, Matyjaszewski K (2009) Temperature effect on activation rate constants in ATRP: new mechanistic insights into the activation process. Macromolecules 42:6050–6055. doi:10.1021/ma9010507

    Article  CAS  Google Scholar 

  36. Chambard G, Klumperman B, German AL (2002) Experimental determination of the rate constant of deactivation of poly(styrene) and poly(butyl acrylate) radicals in atom transfer radical polymerization. Macromolecules 35:3420–3425. doi:10.1021/ma011623f

    Article  CAS  Google Scholar 

  37. Singer AB, Barton PI (2006) Global optimization with nonlinear ordinary differential equations. J Glob Optim 34:159–190. doi:10.1007/s10898-005-7074-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roniérik P. Vieira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, R.P., Lona, L.M.F. Optimization of reaction conditions in functionalized polystyrene synthesis via ATRP by simulations and factorial design. Polym. Bull. 73, 1795–1810 (2016). https://doi.org/10.1007/s00289-015-1577-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1577-z

Keywords

Navigation