Skip to main content

Advertisement

Log in

Prediction of antileukemia activity of berbamine derivatives by genetic algorithm–multiple linear regression

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A quantitative structure–activity relationship study was performed on a data set of 32 berbamine derivatives that possess antileukemia activity. Semiempirical quantum chemical calculation (AM1 method) was used to find the optimum 3D geometries of the studied molecules. A suitable set of molecular descriptors was calculated and genetic algorithm–multiple linear regression was employed to select the descriptors that resulted in the models with the best fit to the data. A multiple linear regression model with five selected descriptors was obtained. The values of statistical measures such as R 2, Q 2, and F obtained for the training set were within acceptable ranges, so this relationship was applied to the test set. The predictive ability of the model was found to be satisfactory, and it can therefore be used to design similar groups of compounds. Also, results suggest that the charge, electronegativity, and atomic van der Waals volumes of the molecules are the main independent factors that contribute to the antileukemia activity of berbamine derivatives.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL (2001) N Engl J Med 344:1031

    Article  CAS  Google Scholar 

  2. Le Coutre P, Tassi E, Varella-Garcia M, Barni R, Mologni L, Cabrita G, Marchesi E, Supino R, Gambacorti-Passerini C (2000) Blood 95:1758

    CAS  Google Scholar 

  3. Xu R, Dong Q, Yu Y, Zhao X, Gan X, Wu D, Lu Q, Xu X, Yu X (2006) Leuk Res 30:17

    Article  CAS  Google Scholar 

  4. Zhao X, He Z, Wu D, Xu R (2007) Chin Med J 120:802

    CAS  Google Scholar 

  5. Xie J, Ma T, Gu Y, Zhang X, Qiu X, Zhang L, Xu R, Yu Y (2009) Eur J Med Chem 44:3293

    Article  CAS  Google Scholar 

  6. Hill DL (1972) The biochemistry and physiology of tetrahymena, 1st edn. Academic, New York, p 230

  7. Deeb O, Hemmateenejad B (2007) Chem Biol Drug Des 70:19

    Article  CAS  Google Scholar 

  8. Verma RP, Kurup A, Hansch C (2005) Bioorg Med Chem 13:237

    Article  CAS  Google Scholar 

  9. Agrawal VK, Khadikar PV (2001) Bioorg Med Chem 9:3035

    Article  CAS  Google Scholar 

  10. Sammes PG, Taylor JB (1990) Comprehensive medicinal chemistry, vo1 4. Pergamon, Oxford, p 766

  11. Depczynski U, Frost VJ, Molt K (2000) Anal Chim Acta 420:217

    Article  CAS  Google Scholar 

  12. Alsberg BK, Marchand-Geneste N, King RD (2000) Chemom Intell Lab Syst 54:75

    Article  CAS  Google Scholar 

  13. Jouanrimbaud D, Massart DL, Leardi R, Denoord OE (1995) Anal Chem 67:4295

    Article  CAS  Google Scholar 

  14. Gilvez J, Garcia R, Salabert MT, Soler R (1994) J Chem lnf Comput Sci 34:520

    Google Scholar 

  15. Gilvez J, Garcia-Domenech R, De Juliin-Ortiz V, Soler R (1995) J Chem lnf Comput Sci 35:272

    Google Scholar 

  16. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim

    Book  Google Scholar 

  17. Todeschini R, Consonni V, Pavana M (2003) Dragon 3.0 software. http://www.disat.unimib.it/chm/

  18. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902

    Article  CAS  Google Scholar 

  19. Dewar MJS, Dieter K (1986) J Am Chem Soc 108:8075

    Article  CAS  Google Scholar 

  20. Kier LB, Hall LH (1986) Molecular connectivity in structure–activity analysis. RSP-Wiley, Chichester

  21. Kostantinova EV (1996) J Chem Inf Comp Sci 36:54

    Google Scholar 

  22. Lucasius CB, Kateman G (1993) Chemom Intell Lab Syst 19:1

    Article  CAS  Google Scholar 

  23. Lucasius CB, Kateman G (1994) Chemom Intell Lab Syst 25:99

    Article  CAS  Google Scholar 

  24. Hibbert DB (1993) Chemom Intell Lab Syst 19:277

    Article  CAS  Google Scholar 

  25. Leardi R, Boggia R, Terrile M (1992) J Chemom 6:267

    Article  CAS  Google Scholar 

  26. Leardi R (1994) J Chemom 8:65

    Article  CAS  Google Scholar 

  27. Khajehsharifi H, Pourbasheer E (2008) J Chin Chem Soc 55:163

    CAS  Google Scholar 

  28. Habibi-Yangjeh A, Pourbasheer E, Danandeh-Jenagharad M (2008) Monatsh Chem 139:1423

    Article  CAS  Google Scholar 

  29. Habibi-Yangjeh A, Pourbasheer E, Danandeh-Jenagharad M (2008) Bull Korean Chem Soc 29:833

    Article  CAS  Google Scholar 

  30. Habibi-Yangjeh A, Pourbasheer E, Danandeh-Jenagharad M (2009) Monatsh Chem 140:15

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Nekoei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nekoei, M., Salimi, M., Dolatabadi, M. et al. Prediction of antileukemia activity of berbamine derivatives by genetic algorithm–multiple linear regression. Monatsh Chem 142, 943–948 (2011). https://doi.org/10.1007/s00706-011-0510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0510-x

Keywords

Navigation