Skip to main content
Log in

Free energy functional of the Ising-like model of spin crossover

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The model of spin crossover based on the Ising-like Hamiltonian (IHM) has been analysed by deriving the functional of free energy from the mean-field solutions of this Hamiltonian. The contribution of the configurational entropy was found to be identical to that in the functional of the molecular statistical model (MSM) of spin crossover. However, the polynomial expansion over composition (x B) and degree of order (s B) in these functionals differ fundamentally due to different ways of accounting for the effects of molecular interactions. It was found that IHM takes into account next-to-nearest neighbour interactions by introducing affinities of sublattices towards molecules of given kinds. This yields a term proportional to the first power of the degree of order in the functional of IHM, whereas the MSM free energy is only proportional to s 2B . The choice of formal independent variables does not affect the results of simulations of transition curves provided the functional remains unaltered. This provides for more flexibility in numerical simulations of transition curves.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Heating mode yields a smaller but statistically indistinguishable regression error than the cooling mode (σ yx  = 0.107 and 0.125, respectively). Curves in Figs. 6 and 7 have been obtained in the heating mode.

References

  1. Guetlich P, Goodwin HA (2004) Top Curr Chem 233:1

    CAS  Google Scholar 

  2. Blundell SJ (2006) Lect Notes Phys 697:345

    Article  CAS  Google Scholar 

  3. Murray KS (2009) Aust J Chem 62:1081

    Article  CAS  Google Scholar 

  4. Koudriavtsev AB, Linert W (2010) Zh Strukt Khim 51:364

    Google Scholar 

  5. Wenbin L, Rieter JW, Taylor KML (2009) Angew Chem Int Ed 48:650

    Article  Google Scholar 

  6. Bodenthin Y, Kurth DG, Schwarz G (2008) Chem Unserer Zeit 42:256

    Article  CAS  Google Scholar 

  7. Gaspar AB, Munoz MC, Real JA (2006) J Mater Chem 16:2522

    Article  CAS  Google Scholar 

  8. Hauser A (2004) Top Curr Chem 233:49

    CAS  Google Scholar 

  9. Paulsen H, Trautwein AX (2004) Top Curr Chem 235:197

    Article  CAS  Google Scholar 

  10. Wajnflasz J (1970) Phys Status Solid 40:537

    Article  CAS  Google Scholar 

  11. Bari R, Sivardiere J (1972) Phys Rev B 5:4466

    Article  Google Scholar 

  12. Zelentsov VV, Lapushkin GL, Sobolev SS, Shipilov VI (1986) Dokl AN SSSR, Ser Khim 289:393

    Google Scholar 

  13. Bousseksou A, Nasser J, Linares J, Boukheddaden K, Varret F (1992) J Phys I France 2:1381

    Article  CAS  Google Scholar 

  14. Nishino M, Boukheddaden K, Miyashita S, Varret F (2005) Polyhedron 24:2852

    Article  CAS  Google Scholar 

  15. Koudriavtsev AB (1999) Chem Phys 241:109

    Article  CAS  Google Scholar 

  16. Koudriavtsev AB, Stassen AF, Haasnoot JG, Grunert M, Weinberger P, Linert W (2003) Phys Chem Chem Phys 5:3666

    Article  CAS  Google Scholar 

  17. Koudriavtsev AB, Jameson RF, Linert W (2006) Monatsh Chem 137:1283

    Article  CAS  Google Scholar 

  18. Koudriavtsev AB, Linert W (2009) MATCH Commun Math Comput Chem 62:5

    CAS  Google Scholar 

  19. Koeppen H, Mueller EW, Koehler CP, Spiering H, Meissner E, Guetlich P (1982) Chem Phys Lett 91:348

    Article  CAS  Google Scholar 

  20. Moelwyn-Hughes EA (1970) Physikalische Chemie. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  21. Sorai M (2002) J Chem Thermodyn 34:1207

    Article  CAS  Google Scholar 

  22. Chernyshov D, Hostettler M, Törnroos KW, Bürgi HB (2003) Angew Chem Int Ed 42:3825

    Article  CAS  Google Scholar 

  23. Kudryavtsev AB, Linert W (1996) Physico-chemical applications of NMR. World Scientific Publishers, Singapore

    Book  Google Scholar 

Download references

Acknowledgments

Thanks for financial support are due to the “Austrian Science Foundation” (Project 19335-N17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Linert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koudrtiavtsev, A.B., Linert, W. Free energy functional of the Ising-like model of spin crossover. Monatsh Chem 141, 601–610 (2010). https://doi.org/10.1007/s00706-010-0315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-010-0315-3

Keywords

Navigation