Skip to main content
Log in

Microstructure and electrical properties of aluminium-substituted La(Sr)Ga(Mg)O3–δ-based solid electrolytes

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Abstract

A study of the influence of the substitution of Al for Ga in the ceramic processing and electrical properties of La0.95Sr0.05Ga0.90–x Al x Mg0.10O3–δ (0 ≤ x ≤ 0.3) solid electrolytes is presented. The materials retained orthorhombic symmetry over the entire substitution range, whereas a deviation from Vegard’s law for x > 0.20 suggested a maximum Al solubility of x = 0.20. Scanning electron microscopy analysis of ceramic samples revealed that grain growth was inhibited for x ≥ 0.2. This microstructural change was related to an apparent deterioration of mechanical properties, as suggested by room-temperature Vickers hardness measurements. Impedance spectroscopy revealed a significant degradation of the grain-boundary electrical properties for x ≥ 0.20, whereas the bulk conductivity was enhanced for 0.10 ≤ x ≤ 0.15. Oxygen-permeability measurements confirmed that the studied materials remain essentially pure ionic conductors. An ionic conductivity maximum of 0.047 S/cm at 700 °C was obtained for x = 0.10. The effect of aluminium in the grain-bulk ionic conductivity is discussed in terms of defect cluster models and assuming fast oxygen diffusion along domain walls.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ishihara T, Matsuda H, Takita Y (1994) J Am Chem Soc 116:3801

    Article  CAS  Google Scholar 

  2. Feng M, Goodenough JB (1994) Eur J Solid State Inorg Chem 31:663

    CAS  Google Scholar 

  3. Huang P, Petric A (1996) J Electrochem Soc 143:1644

    Article  CAS  Google Scholar 

  4. Huang K, Tichy RS, Goodenough JB (1998) J Am Ceram Soc 81:2581

    Article  CAS  Google Scholar 

  5. Yamaji K, Horita T, Ishikawa M, Sakai N, Yokokawa H (1998) Solid State Ion 108:415

    Article  CAS  Google Scholar 

  6. Majewski P, Rozumek M, Aldinger F (2001) J Alloys Comp 329:253

    Article  CAS  Google Scholar 

  7. Nguyen TL, Dokiya M (2000) Solid State Ion 132:217

    Article  Google Scholar 

  8. Sora IN, Pelosato R, Dotelli G, Schmid C, Ruffo R, Mari CM (2005) Solid State Ion 176:81

    Article  Google Scholar 

  9. Kajitani M, Matsuda M, Miyake M (2007) Solid State Ion 178:355

    Article  CAS  Google Scholar 

  10. Yasuda I, Matsuzaki Y, Yamakawa T, Koyama T (2000) Solid State Ion 135:381

    Article  CAS  Google Scholar 

  11. Matraszek A, Miller M, Singheiser L, Hilpert K (2003) J Am Ceram Soc 86:1911

    Article  CAS  Google Scholar 

  12. Shannon RD (1976) Acta Cryst A32:751

    Article  CAS  Google Scholar 

  13. Haavik C, Ottesen EM, Nomura K, Kilner JA, Norby T (2004) Solid State Ion 174:233

    Article  CAS  Google Scholar 

  14. Huang K, Tichy RS, Goodenough JB (1998) J Am Ceram Soc 81:2565

    Article  CAS  Google Scholar 

  15. Fleig J (2000) Solid State Ion 131:117

    Article  CAS  Google Scholar 

  16. Gomes E, Soares MR, Figueiredo FM, Marques FMB (2005) J Eur Ceram Soc 25:2599

    Article  CAS  Google Scholar 

  17. Kurumada M, Iguchi E, Savytskii DI (2006) J Appl Phys 100:014107

    Article  Google Scholar 

  18. Nguyen TL, Dokiya M, Wanga S, Tagawa H, Hashimoto T (2000) Solid State Ion 130:229

    Article  CAS  Google Scholar 

  19. Suzuki Y (1995) Solid State Ion 81:211

    Article  CAS  Google Scholar 

  20. Huang K, Feng M, Goodenough JB (1998) J Am Ceram Soc 81:357

    Article  CAS  Google Scholar 

  21. Islam MS, Davies RA (2004) J Mat Chem 14:86

    Article  CAS  Google Scholar 

  22. Vasylechko L, Vashook V, Savytskii D, Senyshyn A, Niew R, Knapp V, Ullmann V, Berkowski M, Matkovskii A, Bismayer U (2003) J Solid State Chem 172:396

    Article  CAS  Google Scholar 

  23. Abrantes JCC, Coll DP, Nuñez P, Figueiredo FM, Frade JR (Submitted) On the origin of tg(δ) maxima revealed by impedance spectra. Part I: model behaviour

  24. Cheng J, Navrostky A (2004) J Solid State Chem 177:126

    Article  CAS  Google Scholar 

  25. Wu B, Zinkevich M, Aldinger F, Zhang W (2007) J Phys Chem Solids 68:570

    Article  CAS  Google Scholar 

  26. Slater PS, Irvine JTS, Ishiara T, Takita Y (1998) J Solid State Chem 139:135

    Article  CAS  Google Scholar 

  27. Yashima M, Nomura K, Kageyama H, Miyazaki Y, Chitose N, Adachi K (2003) Chem Phys Let 380:391

    Article  CAS  Google Scholar 

  28. Skowron A, Huang P-N, Petric AJ (1999) J Solid State Chem 143:202

    Article  CAS  Google Scholar 

  29. Khan MS, Islam MS, Bates DR (1998) J Phys Chem B 102:3099

    Article  CAS  Google Scholar 

  30. De Souza RA, Maier J (2003) Phys Chem Chem Phys 5:740

    Article  Google Scholar 

  31. Bueble S, Knorr K, Brecht E, Schmahl W (1998) Surf Sci 400:345

    Article  CAS  Google Scholar 

  32. Calleja M, Dove MT, Salje EKH (2003) J Phys Condens Matter 15:2301

    Article  CAS  Google Scholar 

  33. Drennan J, Zelizko V, Hay D, Ciacchi FT, Rajendran S, Badwal SPS (1997) J Mater Chem 7:79

    Article  CAS  Google Scholar 

  34. Savytskii DI, Trots DM, Vasylechko LO, Tamura N, Berkowski M (2003) J Appl Cryst 36:1197

    Article  CAS  Google Scholar 

  35. Aird A, Salje EKH (1998) J Phys Condens Matter 10:L337

    Google Scholar 

  36. Harrison RJ, Redfern SAT, Salje EKH (2004) Phys Rev B 69:144101

    Article  Google Scholar 

  37. Park JY, Choi GM (2002) Solid State Ion 154–155:535

    Article  Google Scholar 

  38. Anderson PS, Marques FMB, Sinclair DC, West AR (1999) Solid State Ion 118:229

    Article  CAS  Google Scholar 

  39. Rodriguez-Carvajal J (1990) FullProf. In: Satellite meeting on powder diffraction. Abstracts of the XVth conference on the international union of crystallography, Toulouse, p 127

  40. Anderwood E (1970) Quantitative stereology. Addison-Wesley, Boston

    Google Scholar 

  41. Mendelson MI (1969) J Am Ceram Soc 42:443

    Article  Google Scholar 

  42. Gomes E, Marques FMB, Figueiredo FM (2008) Solid State Ion 179:1325

    Article  CAS  Google Scholar 

  43. Figueiredo FM, Marques FMB, Frade JR (1998) Solid State Ion 110:45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude for financial support from COST Action 525, PRODEP (E. Gomes), FCT (Portugal), and CEC-Brussels (NoE FAME).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe M. Figueiredo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, E., Mather, G.C., Figueiredo, F.M. et al. Microstructure and electrical properties of aluminium-substituted La(Sr)Ga(Mg)O3–δ-based solid electrolytes. Monatsh Chem 140, 1041–1052 (2009). https://doi.org/10.1007/s00706-009-0139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-009-0139-1

Keywords

Navigation