Skip to main content
Log in

Practical applications of the chemical strain effect in ionic and mixed conductors

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Abstract

The chemical strain effect in solids is the deviation from linear elasticity due to the association and dissociation of point defects. Although to date this effect has been observed and studied only in Ce0.8Gd0.2O1,9, one may expect that it will be found in other ionic and mixed conductors containing a large concentration of point defects. In this work, some practical applications of materials exhibiting the chemical strain effect are discussed. Based on the example of Ce0.8Gd0.2O1,9, mechanical structures built from these materials should exhibit exceptional mechanical stability and are therefore very attractive for use as components of solid oxide fuel cells (SOFC) or other devices subjected to large and frequent temperature variations. The ability of these materials to withstand large strain without accumulating large stress also makes them potentially useful as flexible elements in micro-electromechanical systems (MEMS).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Greenberg M, Wachtel E, Lubomirsky I, Fleig J, Maier J (2006) Adv Funct Mater 16:48–52

    Article  CAS  Google Scholar 

  2. Kossoy A, Feldman Y, Wachtel E, Lubomirsky I, Maier J (2007) Adv Funct Mater 17:2393–2398

    Article  CAS  Google Scholar 

  3. Kossoy A, Isai F, Korobko R, Wachtel E, Lubomirsky I, Maier J (2009) Adv Funct Mater 19(4):634

    Article  CAS  Google Scholar 

  4. Lubomirsky I (2007) Phys Chem Chem Phys 9:3701–3710

    Article  CAS  Google Scholar 

  5. Atkinson A, Sun B (2007) Mater Sci Technol 23:1135–1143

    Article  CAS  Google Scholar 

  6. Tang YH, Stanley K, Wu J, Ghosh D, Zhang JJ (2005) J Micromech Microeng 15:S185–S192

    Article  CAS  Google Scholar 

  7. Maluf N, Williams K (2004) An introduction to MEMS engineering. Artech House, Boston

    Google Scholar 

  8. Kovacs GTA (1999) Micromachined transducers sourcebook, 1st edn. WCB/McGraw Hill, NY

    Google Scholar 

  9. Larche FC, Cahn JW (1982) Acta Metall 30:1835–1845

    Article  Google Scholar 

  10. Larche F, Cahn JW (1973) Acta Metall 21:1051–1063

    Article  CAS  Google Scholar 

  11. Katsuki M, Wang SR, Yasumoto K, Dokiya M (2002) Solid State Ionics 154:589–595

    Article  Google Scholar 

  12. Wang DY, Park DS, Griffith J, Nowick AS (1981) Solid State Ionics 2:95–105

    Article  CAS  Google Scholar 

  13. Butler V, Catlow CRA, Fender BEF, Harding JH (1983) Solid State Ionics 8:109–113

    Article  CAS  Google Scholar 

  14. Tschope A (2005) J Electroceramics 14:5–23

    Article  Google Scholar 

  15. Duncan KL, Wang YL, Bishop SR, Ebrahimi F, Wachsman ED (2007) J Appl Phys 101

  16. Lubomirsky I (2006) Solid State Ionics 177:1639–1642

    Article  CAS  Google Scholar 

  17. Knauth P, Tuller HL (2002) J Am Ceram Soc 85:1654–1680

    Article  CAS  Google Scholar 

  18. Maier J (2004) Physical chemistry of ionic materials: ions and electrons in solids. Wiley, NY

    Book  Google Scholar 

  19. Inaba H, Tagawa H (1996) Solid State Ionics 83:1–16

    Article  CAS  Google Scholar 

  20. Rivera A, Santamaria J, Leon C (2001) Appl Phys Lett 78:610–612

    Article  CAS  Google Scholar 

  21. Green DJ (1998) An introduction to the mechanical properties of ceramics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Atkinson A (1997) Solid State Ionics 95:249–258

    Article  CAS  Google Scholar 

  23. Wang SR, Katsuki M, Hashimoto T, Dokiya M (2003) J Electrochem Soc 150:A952–A958

    Article  CAS  Google Scholar 

  24. Bloom F, Coffin D (2001) Handbook of thin plate buckling and postbuckling. Chapman & Hall/CRC, London/New York

    Google Scholar 

  25. Nair JP, Wachtel E, Lubomirsky I, Fleig J, Maier J (2003) Adv Mater 15:2077

    Article  CAS  Google Scholar 

  26. Baertsch CD, Jensen KF, Hertz JL, Tuller HL, Vengallatore ST, Spearing SM, Schmidt MA (2004) J Mater Res 19:2604–2615

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Lubomirsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubomirsky, I. Practical applications of the chemical strain effect in ionic and mixed conductors. Monatsh Chem 140, 1025–1030 (2009). https://doi.org/10.1007/s00706-009-0122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-009-0122-x

Keywords

Navigation