Skip to main content

Advertisement

Log in

Interface Defect Chemistry and Effective Conductivity in Polycrystalline Cerium Oxide

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Polycrystalline cerium oxide exhibits increasing electronic and decreasing ionic conductivity upon reduction of the grain size. In the present study, the origin of this effect was examined. Temperature-programmed reduction (TPR) and oxygen titration measurements on nanocrystalline cerium oxide revealed a large excess oxygen deficiency associated with the surface. Using a two-phase model for the combined system of the bulk phase in equilibrium with a surface layer, this enhanced oxygen deficiency could be explained by a reduced binding energy of surface oxygen ions in agreement with results from atomistic computer simulations. The model also revealed that this segregation of oxygen vacancies is the origin of an intrinsic space charge potential. Translating this effect to polycrystalline cerium oxide and taking into account the segregation of dopants and the accumulation/depletion of charge carriers, it was possible to model the grain size dependence of electrical conductivity and thermopower of polycrystalline cerium oxide. A straightforward 1-dimensional numerical model and a change from Boltzmann to Fermi-Dirac statistics allowed to calculate the conductivity of heavily doped polycrystalline cerium oxide for grain sizes in the range of 5–10,000 nm and acceptor concentrations up to 20%. Using this approximation, the effect of grain size on mixed ionic/electronic conductivity and the electrolytic domain boundary was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.V. Kharton and F.M.B. Marques, Curr. Opin. Sol. State Mater. Sci., 6, 261 (2002).

    Google Scholar 

  2. H.L. Tuller, Solid State Ionics, 131, 143 (2000).

    Google Scholar 

  3. J. Schoonman, Solid State Ionics, 135, 5 (2000).

    Google Scholar 

  4. T.H. Etsel and S.N. Flengas, Chem. Rev., 70, 339 (1970).

    Google Scholar 

  5. H.L. Tuller and A.S. Nowick, J. Electrochem. Soc., 122, 255 (1975).

    Google Scholar 

  6. H.L. Tuller, in Nonstoichiometric Oxides, edited by T.O. S⊘rensen (Academic Press, New York, 1981), p. 271.

    Google Scholar 

  7. I. Riess, Sol. State Ionics, 52, 127 (1992).

    Google Scholar 

  8. D.Y. Wang, D.S. Park, J. Griffith, and A.S. Nowick, Solid State Ionics, 2, 95 (1981).

    Google Scholar 

  9. R. Gerhardt-Anderson and A.S. Nowick, Solid State Ionics, 5, 547 (1981).

    Google Scholar 

  10. V. Butler, C.R.A. Catlow, B.E.F. Fender, and J.H. Harding, Solid State Ionics, 8, 109 (1983).

    Google Scholar 

  11. K. Eguchi, T. Setoguchi, T. Inoue, and H. Arai, Solid State Ionics, 52, 165 (1992).

    Article  CAS  Google Scholar 

  12. I. Riess, M. Gödickemeier, and L.J. Gauckler, Sol. State Ionics, 90, 91 (1996).

    Google Scholar 

  13. B.C.H. Steele, Solid State Ionics, 129, 95 (2000).

    Article  CAS  Google Scholar 

  14. J.A. Kilner, Solid State Ionics, 129, 13 (2000).

    Google Scholar 

  15. R. Gerhardt and A.S. Nowick, J. Am. Ceram. Soc., 69, 641 (1986).

    Google Scholar 

  16. R. Gerhardt, A.S. Nowick, M.E. Mochel, and I. Dumler, J. Am. Ceram. Soc., 69, 647 (1986).

    Google Scholar 

  17. D.Y. Wang and A.S. Nowick, J. Solid State Chem., 35, 325 (1980).

    Google Scholar 

  18. M. Aoki, Y.-M. Chiang, I. Kosacki, L.J.-R. Lee, H.L. Tuller, and Y. Liu, J. Am. Ceram. Soc., 79, 1169 (1996).

    Google Scholar 

  19. Y.-M. Chiang, E.B. Lavik, I. Kosacki, H.L. Tuller, and J.Y. Ying, Appl. Phys. Lett., 69, 185 (1996).

    Google Scholar 

  20. Y.-M. Chiang, E.B. Lavik, I. Kosacki, H.L. Tuller, and J.Y. Ying, J. Electroceramics, 1, 7 (1997).

    Google Scholar 

  21. J.H. Hwang and T.O. Mason, Z. Phys. Chem., 207, 21 (1998).

    Google Scholar 

  22. I. Kosacki, T. Suzuki, and H.U. Anderson, in Solid State Ionic Devices, ECS Proceedings, edited by E.D. Wachsman, M.-L. Liu, J.R. Akridge, and N. Yamazoe (Electrochemical Society, Pennington, 1999), Vol. 99–13, p. 190.

  23. A. Tschöpe, J.Y. Ying, and H.L. Tuller, Sensors & Actuators, B31, 111 (1992).

    Google Scholar 

  24. A. Tschöpe, E. Sommer, and R. Birringer, Solid State Ionics, 139, 255 (2001).

    Google Scholar 

  25. S. Kim and J. Maier, J. Electrochem. Soc., 149, J73 (2002).

    Google Scholar 

  26. X. Guo, W. Sigle, and J. Maier, J. Am. Ceram. Soc., 86, 77 (2003).

    Google Scholar 

  27. A. Tschöpe, Solid State Ionics, 139, 267 (2001).

    Google Scholar 

  28. J. Maier, Ber. Bunsenges. Phys. Chem., 88, 1057 (1984).

    Google Scholar 

  29. J. Maier, Prog. Solid State Chem., 23, 171 (1995).

    Google Scholar 

  30. Y. Saito and J. Maier, J. Electrochem. Soc., 142, 3078 (1995).

    Google Scholar 

  31. P.C. McIntyre, J. Am. Ceram. Soc., 83, 1129 (2001).

    Google Scholar 

  32. R. Waser and R. Hagenbeck, Acta mater., 48, 797 (2000).

    Google Scholar 

  33. X. Guo and J. Maier, J. Electrochem. Soc., 148, E121 (2001).

    Google Scholar 

  34. A. Tschöpe, S. Kilassonia, B. Zapp, and R. Birringer, Solid State Ionics, 149, 261 (2002).

    Google Scholar 

  35. A. Trovarelli, Catalysis by Ceria and Related Materials (Imperial College Press, London, 2002).

    Google Scholar 

  36. A. Bielanski and J. Haber, Oxygen in Catalysis (Marcel Dekker, New York, 1991).

    Google Scholar 

  37. H.C. Yao and Y.F. Yu Yao, J. Catal., 86, 254 (1984).

    Google Scholar 

  38. A.D. Logan and M. Shelef, J. Mater. Res., 9, 468 (1994).

    Google Scholar 

  39. M. Shelef, G.W. Graham, and R.W. McCabe, in Catalysis by Ceria and Related Materials, edited by A. Trovarelli (Imperial College Press, London, 2002), p. 343.

    Google Scholar 

  40. J. Jamnik, J. Maier, and S. Pejovnik, Solid State Ionics, 75, 51 (1995).

    Google Scholar 

  41. H.L. Tuller and A.S. Nowick, J. Electrochem. Soc., 126, 209 (1979).

    Google Scholar 

  42. The value for the pre-exponential given in ref. [11] was divided by the number of CeO2 formula units per unit volume (2.525 ⋅ 1022cm−3) in order to express all defect concentrations in molar fractions.

  43. O. Porat and H.L. Tuller, J. Electroceram., 1, 41 (1997).

    Google Scholar 

  44. D. Schneider, M. Gödickemeier, and L.J. Gauckler, J. Electroceram., 1, 165 (1997).

    Google Scholar 

  45. J.W. Gibbs, Collected Works (Yale University Press, New Haven, 1957), Vol. 1.

    Google Scholar 

  46. A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials, (Clarendon Press, Oxford, 1995).

    Google Scholar 

  47. J.W. Cahn, in Interfacial Segregation edited by W.C. Johnson and J.M. Blakely (ASM, Metals Park, OH, 1979), p. 3.

    Google Scholar 

  48. J.W. Niemantsverdriet, Spectroscopy in Catalysis (VCH, Weinheim, 1995).

    Google Scholar 

  49. P. Zimmer, A. Tschöpe, and R. Birringer, J. Catal., 205, 339 (2002).

    Google Scholar 

  50. S. Bernal, J.J. Calvino, G.A. Cifredo, J.M. Gatica, J.A. Perez Omil, and J.M. Pintado, J. Chem. Soc. Faraday Trans., 89, 3499 (1993).

    Google Scholar 

  51. M. Trudeau, A. Tschöpe, and J.Y. Ying, Surf. Interf. Anal., 23, 219 (1995).

    Google Scholar 

  52. A. Tschöpe and R. Birringer, Nanostr. Mater., 9, 591 (1997).

    Google Scholar 

  53. O. Porat, H.L. Tuller, E.B. Lavik, and Y.-M. Chiang, in Nanophase and Nanocomposite Materials II edited by S. Komraneni, J. Parker, and H. Wollenberger (Materials Research Society, Warrington, 1997), p. 99.

    Google Scholar 

  54. S. Monz, Master’s thesis, Universität des Saarlandes, 2003.

  55. D.M. Schaadt, Master’s thesis, Universität des Saarlandes, 1997.

  56. Y. Lei, Y. Ito, and N.D. Browning, J. Am. Ceram. Soc., 85, 2359 (2002).

    Google Scholar 

  57. Y.P. Arnaud, Appl. Surf. Sci., 62, 21 (1992).

    Google Scholar 

  58. J. Frenkel, Kinetic Theory of Liquids (Oxford University Press, New York, 1946).

    Google Scholar 

  59. K. Lehovec, J. Chem. Phys., 21, 1123 (1953).

    Google Scholar 

  60. K.L. Kliewer and J.S. Koehler, Phys. Rev., 140, 1226 (1965).

    Google Scholar 

  61. J.-H. Han and D.-Y. Kim, J. Am. Ceram. Soc., 84, 539 (2001).

    Google Scholar 

  62. J. Maier, in Festkörper–Fehler und Funktion (Teubner Studienbücher, Stuttgart, 2000), p. 110.

    Google Scholar 

  63. A.V. Chadwick and G.E. Rush, in Nanocrystalline Metals and Oxides: Selected Properties and Applications edited by P. Knauth and J. Schoonman (Kluwer Academic Publ., Norwell, 2002), p. 133.

    Google Scholar 

  64. G. Gouy, J. Physique, 9, 457 (1910).

    Google Scholar 

  65. D.L. Chapman, Phil. Mag., 25, 475 (1913).

    Google Scholar 

  66. D.F. Evans and H. Wennerström, The Colloidal Domain (VCH Publisher, New York, 1994), p. 110.

    Google Scholar 

  67. D.C. Sayle, S.C. Parker, and C.R.A. Catlow, J. Chem. Soc.,Chem. Commun., 14, 977, (1992).

    Google Scholar 

  68. D.C. Sayle, S.C. Parker, and C.R.A. Catlow, Surf. Sci., 316, 329 (1994).

    Google Scholar 

  69. J.C. Conesa, Surf. Sci., 339, 337 (1995).

    Google Scholar 

  70. G. Balducci, J. Kčaspar, P. Fornasiero, M. Graziani, and M. Saiful Islam, J. Phys. Chem., 102, 557 (1998).

    Google Scholar 

  71. A. Pfau and K.D. Schierbaum, Surf. Sci., 321, 71 (1994).

    Google Scholar 

  72. R. Birringer, M. Hoffimann, and P. Zimmer, Z. Metallkd., 94, 1052 (2003).

    Google Scholar 

  73. S. Kim, R. Merkle, and J. Maier, Surf. Sci., 549, 196 (2004).

    Google Scholar 

  74. C. Li, Y. Sakata, T. Arai, K. Domen, K. Maruya, and T. Onishi, J. Am. Chem. Soc., 111, 7683 (1989).

    Google Scholar 

  75. M.F. Yan, R.M. Cannon, and H.K. Bowen, J. Appl. Phys., 54, 764 (1983).

    Google Scholar 

  76. R.C. McCune and P. Wynblatt, J. Am. Ceram. Soc., 66, 111 (1983).

    Google Scholar 

  77. A. Nakajima, A. Yoshihara, and M. Ishigame, Phys. Rev. B, 50, 13297 (1994).

    Google Scholar 

  78. W.H. Qi, M.P. Wang, and Y.C. Su, J. Mater. Sci. Lett., 21, 877 (2002).

    Google Scholar 

  79. H. Brooks, Impurities and Imperfection (American Society for Metals, Ohio, 1955), p. 1.

    Google Scholar 

  80. R.T. DeHoff, in Applied Metallography edited by G.F. Vander Voort (Van Nostrand, New York, 1986), p. 89.

    Google Scholar 

  81. C.E. Krill and R. Birringer, Phil. Mag. A, 77, 621 (1998).

    Google Scholar 

  82. J. Maier, Ber. Bunsenges. Phys. Chem., 90, 26 (1986).

    Google Scholar 

  83. A. Tschöpe and R. Birringer, J. Electroceramics, 7, 169 (2001).

    Google Scholar 

  84. A. Tschöpe, C. Bäuerle, and R. Birringer, J. Appl. Phys., 95, 1203 (2004).

    Google Scholar 

  85. A. Tschöpe, in Solid State Ionics, MRS Proceedings edited by P. Knauth, J.-M. Tarascon, E. Traversa, and H.L. Tuller (Materials Research Society, Warrendale, 2003), Vol. 756, p. EE4.2.

    Google Scholar 

  86. H. Schmalzried, Z. Phys. Chem., 105, 47 (1977).

    Google Scholar 

  87. A.D. Murray, G.E. Murch, and C.R.A. Catlow, Solid State Ionics, 18/19, 196 (1986).

    Google Scholar 

  88. P. Knauth and H.L. Tuller, J. Appl. Phys., 85, 897 (1999).

    Google Scholar 

  89. C.-W. Nan, A. Tschöpe, S. Holten, H. Kliem, and R. Birringer, J. Appl. Phys., 85, 7735 (1999).

    Google Scholar 

  90. I. Kosacki and H.U. Anderson, Ionics, 6, 294 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Tschöpe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tschöpe, A. Interface Defect Chemistry and Effective Conductivity in Polycrystalline Cerium Oxide. J Electroceram 14, 5–23 (2005). https://doi.org/10.1007/s10832-005-6580-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-005-6580-6

Keywords

Navigation