Skip to main content
Log in

Exploring the Limits of Emulsion Polymerization of Styrene for the Synthesis of Polymer Nanoparticles

  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Summary.

Suspensions of polymer nanoparticles in water (latices) with average particle diameters between 20 and 80 nm were synthesized by batch emulsion polymerization of styrene using sodium dodecyl sulphate (SDS) as surfactant and potassium persulphate (KPS) as initiator. The influence of surfactant concentration, initiator concentration, monomer concentration, and reaction temperature on the final average particle diameters and size distributions of the latices were studied. The number of particles generated was proportional to the 0.56 power of the emulsifier concentration and to the 0.37 power of the initiator concentration in the whole concentration range which was observed. Furthermore, the final number of particles was dependant on the reaction temperature to the 2.06 power. With these correlations the average particle number as well as the average particle size could be estimated, and the results were in good agreement (±6%) with the experimental values. A reduction of the monomer/water ratio from 1:5 to 1:20 yielded smaller particle diameters, while leaving the particle number unaffected. The lower particle size limits for monomer ratios of 1:10 and 1:15 were estimated with diameters of about 18 and 16 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • PA Lovell MS El-Aasser (Eds) (1997) Emulsion Polymerization and Emulsion Polymers Wiley West Sussex, England

    Google Scholar 

  • H Kawaguchi (2000) Prog Polym Sci 25 1171 Occurrence Handle10.1016/S0079-6700(00)00024-1 Occurrence Handle1:CAS:528:DC%2BD3cXosVOitbk%3D

    Article  CAS  Google Scholar 

  • SB Brijmohan S Swier RA Weiss TM Shaw (2005) Ind Eng Chem Res 44 8039 Occurrence Handle10.1021/ie050703v Occurrence Handle1:CAS:528:DC%2BD2MXhtVWhsLvF

    Article  CAS  Google Scholar 

  • H Du P Chen FD Meng TJ Li XY Tang (1997) Mat Chem Phys 51 277 Occurrence Handle10.1016/S0254-0584(97)80318-5 Occurrence Handle1:CAS:528:DyaK2sXnt1ykt7c%3D

    Article  CAS  Google Scholar 

  • C Graillat C Pichot A Guyot (1991) Coll Surf 56 189 Occurrence Handle10.1016/0166-6622(91)80120-D Occurrence Handle1:CAS:528:DyaK3MXkvFegtLk%3D

    Article  CAS  Google Scholar 

  • K Kato H Hondo M Takeda K Esumi K Meguro (1987) Coll Polym Sci 256 950 Occurrence Handle10.1007/BF01412396

    Article  Google Scholar 

  • WD Harkins (1945) J Chem Phys 13 381 Occurrence Handle10.1063/1.1724054 Occurrence Handle1:CAS:528:DyaH2MXjtl2qug%3D%3D

    Article  CAS  Google Scholar 

  • WD Harkins (1946) J Chem Phys 14 47 Occurrence Handle10.1063/1.1724062 Occurrence Handle1:CAS:528:DyaH28XhslejtQ%3D%3D

    Article  CAS  Google Scholar 

  • WV Smith RH Ewart (1948) J Chem Phys 16 592 Occurrence Handle10.1063/1.1746951 Occurrence Handle1:CAS:528:DyaH1cXivFWrtg%3D%3D

    Article  CAS  Google Scholar 

  • WV Smith (1948) J Am Chem Soc 70 3695 Occurrence Handle10.1021/ja01191a045 Occurrence Handle1:CAS:528:DyaH1MXnsleq

    Article  CAS  Google Scholar 

  • E Bartholomé H Gerrens R Herbeck HM Weitz (1956) Z Elektrochem 60 334

    Google Scholar 

  • R Wintgen J Lohmann (1951) Kolloid Z 122 103 Occurrence Handle10.1007/BF01525499 Occurrence Handle1:CAS:528:DyaG38XjsVGitg%3D%3D

    Article  CAS  Google Scholar 

  • AS Dunn WA Al-Shahib (1978) Br Polym J 10 137 Occurrence Handle10.1002/pi.4980100208 Occurrence Handle1:CAS:528:DyaE1MXitVCmt78%3D

    Article  CAS  Google Scholar 

  • PJ Feeney DH Napper RG Gilbert (1987) J Coll Int Sci 118 493 Occurrence Handle10.1016/0021-9797(87)90485-1 Occurrence Handle1:CAS:528:DyaL2sXlsVais7g%3D

    Article  CAS  Google Scholar 

  • FA Bovey IM Kolthoff AJ Medalia EJ Meehan (1955) Emulsion Polymerization Interscience Publ Inc. New-York-London

    Google Scholar 

  • H Gerrens (1959) Adv Polym Sci 1 234 Occurrence Handle10.1007/BFb0050486

    Article  Google Scholar 

  • JW Vanderhoff EB Bradford (1956) J Coll Sci 11 135 Occurrence Handle10.1016/0095-8522(56)90033-2

    Article  Google Scholar 

  • M Nomura M Harada (1981) ACS Symp Ser 165 121 Occurrence Handle1:CAS:528:DyaL3MXlvVOlu7g%3D Occurrence Handle10.1021/bk-1981-0165.ch006

    Article  CAS  Google Scholar 

  • YT Choi MS El-Aasser ED Sudol JW Vanderhoff (1985) J Polym Sci A: Polym Chem Ed 23 2973 Occurrence Handle10.1002/pol.1985.170231206 Occurrence Handle1:CAS:528:DyaL28XhtFShtbo%3D

    Article  CAS  Google Scholar 

  • JS Guo ED Sudol JW Vanderhoff MS El-Aasser (1992) J Polym Sci A: Polym Chem Ed 30 691 Occurrence Handle10.1002/pola.1992.080300501 Occurrence Handle1:CAS:528:DyaK38XhslCrtr0%3D

    Article  CAS  Google Scholar 

  • W Heller WJ Pangonis (1957) J Chem Phys 26 498 Occurrence Handle10.1063/1.1743332 Occurrence Handle1:CAS:528:DyaG2sXlsFanug%3D%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Wutzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wutzel, H., Samhaber, W. Exploring the Limits of Emulsion Polymerization of Styrene for the Synthesis of Polymer Nanoparticles. Monatsh. Chem. 138, 357–361 (2007). https://doi.org/10.1007/s00706-007-0605-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-007-0605-6

Navigation